Snake Wrangling For Kids

Learning to Program with Python

Written by Jason R. Briggs

Snake Wrangling for Kids, Learning to Program with Python
by Jason R. Briggs

Version 0.7.7

Copyright ¢ 2007.

Published by... ah, no one actually.

Cover art and illustrations by Nuthapitol C.

Website:
http://www.briggs.net.nz/log/writing/snake-wranglin g-for-kids

Thanks To:

Guido van Rossum (for benevelont dictatorship of the Pythofanguage), the mem-
bers of theEdu-Sigmailing list (for helpful advice and commentary), authorDavid Brin
(the original instigator of this book), Michel Weinachter (for providing better quaity
versions of the illustrations), and various people for praging feedback and errata,
including: Paulo J. S. Silva, Tom Pohl, Janet Lathan, MartinSchimmels, and Mike
Cariaso (among others). Anyone left o this list, who should't have been, is en-
tirely due to premature senility on the part of the author.

License:

[@0Se)

This work is licensed under the Creative Commons Attributia-Noncommercial-
Share Alike 3.0 New Zealand License. To view a copy of thisditse, visit
http://creativecommons.org/licenses/by-nc-sa/3.0/nz/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, ©atifa, 94105, USA.

Below is a summary of the license.

You are free:

to Share to copy, distribute and transmit the work

to Remix to adapt the work

http://www.briggs.net.nz/log/writing/snake-wrangling-for-kids
http://www.python.org/community/sigs/current/edu-sig/
http://www.davidbrin.com/
http://www.salon.com/tech/feature/2006/09/14/basic/
http://creativecommons.org/licenses/by-nc-sa/3.0/nz/

Under the following conditions:

Attribution. You must attribute the work in the manner speci ed by the author
or licensor (but not in any way that suggests that they endoes you or your
use of the work).

Noncommercial. You may not use this work for commercial purposes.

Share Alike. If you alter, transform, or build upon this work, you may distibute
the resulting work only under the same or similar license tchts one.

For any reuse or distribution, you must make clear to othershie license terms of
this work.

Any of the above conditions can be waived if you get permissidrom the copyright
holder.

Nothing in this license impairs or restricts the author's mamal rights.

P pgthon

powered

Contents

Preface

1

3

Not all snakes will squish you

1.1 A Few Words About Language
1.2 The Order of Non-venomousConstricting Serpentes
1.3 Your rst Python program

1.4 Your Second Python program :ithe same again?

2.1 Use of brackets and \Order of Operations”.
2.2 There's nothing so ckleasavariable
23 Using Variable.
24 APiece of String?
2.5 Tricks with Strings
2.6 Notquite ashoppinglist.
27 Tuplesand Lists.
28 Thingstotry

Turtles, and other slow moving creatures
3.1 Thingstotry e e

How to ask a question

11
13
15
16
18
19
22
23

25
31

33

4.2 Do this:: or do this::: or do this:::or ELSE!!
4.3 Combining conditions. o
4.4 EmMPLiness. e e e e
45 What'sthedierence::? 0 ..

Again and again

Sort of like recycling

6.1 Bitsand Pieces.
6.2 Modules.
6.3 Thingstotry e

A short chapter about Files

Turtles galore

8.1 Colouringin. e
8.2 Darkness.
8.3 Fillingthings
8.4 Thingstotry

A bit graphic

9.1 QuickDraw e e
9.2 Simple Drawing. e e
9.3 Drawing Boxes
9.4 Drawing ArCS o i e e e e
95 Drawing Ovals. e
9.6 Drawing Polygons. e
9.7 DrawingImages. e e

9.8 Basic Animation e

38

41
44
50
52

53
57
59
61

63

65
69
72
72
78

81

10 Where to go from here 103
A Python Keywords 105
B Built-in Functions 119
C A Few Python Modules 129

D Answers to \Things to try" 139

Preface

A Note to Parents...

Dear Parental Unit or other Caregiver,

In order for your child to get started with programming, youre going to need
to install Python on your computer. This book has recently ben updated to use
Python 3.0{this latest version of Python is not compatible vith earlier versions, so
if you have an earlier version of Python installed, then yoil'need to download an
older release of the book.

Installing Python is a fairly straight-forward task, but th ere are a few wrinkles
depending upon what sort of Operating System you're usingf you've just bought
a shiny new computer, have no idea what to do with it, and that pevious statement
has lled you with a severe case of the cold chills, you'll plmbly want to nd
someone to do this for you. Depending upon the state of yourroputer, and the
speed of your internet connection, this could take anythindgrom 15 minutes to a
few hours.

At time of writing, installing Python 3 on your Mac is a more canplicated process
than usual. At the moment, there are no one-click install pdages available. There
is information out there describing the installation procss (here is a googage, but
the basic process is to download the source package and theildit yourself. This
isn't as di cult as it sounds, but you will need to follow a few steps in the Terminal.
If you nd this too complicated, | recommend sticking with the previous versionof
this book.

First of all, go to www.python.org and download the Python source package. As of
Dec 2008, the address for this download is:

http://www.python.org/ftp/python/3.0/Python-3.0.tar .bz2

Start the Terminal application, and enter the following conmands:

\'

http://farmdev.com/thoughts/66/python-3-0-on-mac-os-x-alongside-2-6-2-5-etc-/
http://www.briggs.net.nz/log/wp-content/uploads/2008/03/swfk-mac.zip
file:www.python.org
http://www.python.org/ftp/python/3.0/Python-3.0.tar.bz2

$ cd ~/Downloads/Python-3.0/

$./configure --enable-framework MACOSX_DEPLOYMENT_T&ERT=10.5 --with-universal-archs=all
$ make && make test

$ sudo make frameworkinstall

The following steps may, or may not, be necessary. First ofl &ype:
Is -la /Library/Frameworks/Python.framework/Versions/
In my case, there are only two directories shown:

drwxr-xr-x 4 root admin 136 6 Dec 23:31 .

drwxr-xr-x 6 root admin 204 6 Dec 23:31 ..

drwxr-xr-x 9 root admin 306 6 Dec 23:32 3.0

Irwxr-xr-x 1 root admin 3 6 Dec 23:31 Current -> 3.0

If you have more than those two directories listed (for exant): : :

drwxr-xr-x 4 root admin 136 6 Dec 23:31 .
drwxr-xr-x 6 root admin 204 6 Dec 23:31 ..
drwxr-xr-x 9 root admin 306 7 Nov 08:19 2.4
drwxr-xr-x 9 root admin 306 22 Mar 23:32 2.5
drwxr-xr-x 9 root admin 306 12 Dec 10:22 2.6
drwxr-xr-x 9 root admin 306 6 Dec 23:31 3.0

Irwxr-xr-x 1 root admin 3 6 Dec 23:31 Current -> 3.0

.. :then you may need to perform the following steps:

$ cd /Library/Frameworks/Python.framework/Versions/
$ sudo rm Current
$ sudo In -s 2.5 Current

Finally, you'll want to setup Python 3 as the default, for when your child opens
the Terminal application. To do this you'll need to edit the path used by Terminal{
start Terminal, and then enter the following command pico /Mbashpro le. This le
may (or may not) exist already, and if it does, there may (or manot) already be a
path set up. In any case, at the bottom of the le, add the follaving:

export PATH="/Library/Frameworks/Python.framework/Ve rsions/3.0/bin:${PATH}"

Save your changes, by hitting CTRL+X, and typing Y to save. Ifyou restart
the Terminal app, and type python, with any luck, you should se something similar
to the following:

Vi

Python 3.0 (r30:67503, Dec 6 2008, 23:22:48)

[GCC 4.0.1 (Apple Inc. build 5465)] on darwin

Type "help”, "copyright", "credits" or "license" for more i nformation.
>>>

After installation: ::

:::You might need to sit down next to your child for the rst few chapters, but
hopefully after a few examples, they should be batting youramds away from the
keyboard to do it themselves. They should, at least, know hot use a text editor
of some kind before they start (no, not a Word Processor, likilicrosoft Word|a
plain, old-fashioned text editor)|they should at least able to open and close les,
create new text les and save what they're doing. Apart from hat, this book will
try to teach the basics from there.

Thanks for your time, and kind regards,
THE BOOK

Vii

Chapter 1

Not all snakes will squish you

Chances are you were given this book for your birthday. Or psibly for Christmas.
Aunty Mildred was going to give you mismatching socks that we two sizes too
large (and you wouldn't want to wear when you grew into them ayway). Instead,
she heard someone talking about this printable book, rememted you had one of
those computer-thingamabobs that you tried to show her howotuse last Christmas
(you gave up when she started trying to talk into the mouse), r&d got them to print
another copy. Just be thankful you didn't get the mouldy old scks.

| hope you're not too disappointed that | popped out of the regcled wrap-
ping paper, instead. A not-quite-so-talkative (okay, notralking-at-all) book, with
an ominous looking title on the front about \Learning ::". But take a moment to
think about how | feel. If you were the character from that noel about wizards that
is sitting on the bookshelf in your bedroom, I'd possibly hay teeth... or perhaps
even eyes. | might have moving pictures inside me, or be able make moaning
ghostly sounds when you opened my pages. Instead, I'm pridteut on dog-eared
A4 sheets of paper, stapled together or perhaps bound in adef. How would |
know|l don't have eyes.

I'd give anything for a nice, sharp set of teeth:

However it's not as bad as it sounds. Even if | can't talk... oibite your ngers
when you're not looking... | can tell you a little bit about what makes computers
work. Not the physical stu, with wires and computer-chips ad cables and de-
vices that would, more than likely, electrocute you as soorsaou touched them (so
don't!")|but the hidden stu running around inside those wi res and computer-chips
and cables and bits, which make computers actually useful.

2 CHAPTER 1. NOT ALL SNAKES WILL SQUISH YOU

It's a little like thoughts run-
ning around inside your head. If you
didn't have thoughts you'd be sitting
on the oor of your bedroom, star-
ing vacantly at the door and drool-
ing down the front of your t-shirt.
Without programs computers would
only be useful as a doorstopland
even then they wouldn't be very use-
ful, because you'd keep tripping over
them in the night. And there's noth-
ing worse than a stubbed toe in the
dark.

I'm just a book and even | know that.

Your family may have a Playstation, Xbox or Wii sitting in the lounge|they're
not much use without programs (Games) to make them work. YoubVD player,
possibly your fridge and even your car, all have computer pgoams to make them
more helpful than they would be otherwise. Your DVD player ha programs to help
it gure out what to play on a DVD; your fridge might have a simple program to
make sure it doesn't use too much electricity, but still keeyour food cold; your car
might have a computer with a program to warn the driver if theyre about to bump
into something.

If you know how to write computer programs, you can do all sostof useful things.
Perhaps write your own games. Create web pages that actuatlp stu, instead of
just sitting there looking somewhat colourful. Being abled program could possibly
even help with your homework.

That said, let's get onto something a bit more interesting.

1.1 A Few Words About Language

Just like humans, certainly whales, possibly dolphins, anchaybe even parents (al-
though that's debatable), computers have their own languag Actually, also like
humans, they have more than one language. There are langugsgevering just about
all the letters of the alphabet. A, B, C, D and E are not only leters, they're also
programming languages (which proves that adults have no irgaation, and should
be made to read either a dictionary or a thesaurus before namgi anything).

1.2. THE ORDER OF NON-VENOMOUS CONSTRICTING SERPENTES::: 3

There are programming languages named after people, namesing simple
acronyms (the capital letters of a series of words), and just few named after a TV
show. Oh, and if you add a few pluses and hashes (+, #) after a gple of those
letters | just listed|that's yet another couple of programm ing languages as well.
Making matters worse, some of the languages are almost thareg and di er only
slightly.

What did | tell you? No imagination!

Luckily, many of these languages have fallen into disuse, wanished completely;
but the list of di erent ways you can “talk' to a computer is sill rather worryingly

large. I'm only going to discuss one of them|otherwise we migt as well not even
get started.

It would be more productive to sit in your bedroom and drool dan the front of
your t-shirt:::

1.2 The Order of Non-venomous
Constricting Serpentes

::0r Pythons, for short.

Apart from being a snake, Python is also a programming langga. However,
it was not named after a legless reptile; rather it is one of ¢hfew programming
languages named after a TV show. Monty Python was a British coedy show
popular during the 1970's (and still popular now, actually) which you have to be a
certain age to nd amusing. Anyone below the age of about: let's say 12:: will
wonder what all the fuss is all about.

There are a number of things about Python (the programming laguage, not
the snake, nor the TV show) that make it extremely useful whegou're learning to
program. For us, at the moment, the most important reason ishiat you can start
it up and do stu really quickly.

This is the part where you hope Mum, Dad (or whomever is in chge of the
computer), has read the part at the beginning of this book ladled \A Note for
Mums and Dads".

There's a good way to nd out if they actually have read it:

In Finder, on the left you should see a group called "Applicains'. Click on
this, and then nd a program called "Terminal' (it'll probably be in a folder called

LExcept the sh slapping dance. That's funny no matter how old you are.

4 CHAPTER 1. NOT ALL SNAKES WILL SQUISH YOU

®06 Terminal — Python — 80x24

Last Llogin: Thu Jun 21 19:38:85 on ttypl

Welcome to Darwin!

Computer :~ $ python

Python 2.4.4 (#1, Oct 18 28086, 18:34:39)

[GCC 4.8.1 (Apple Computer, Inc. build 5341)] on darwin

Type "help", "copvright", "credits" or "license" for more information.

33

[

Figure 1.1: The Python console on Mac OSX.

“Utilities"). Click on "Terminal’, and when it starts up, ty pe python and hit enter.
You'll should hopefully be looking at a window that looks lile Figure 1.1.

If you discover they haven't read the section in the beginnin g:::

.. :because there is something missing when you try to follow tb® instructions|
then turn to the front of the book, poke it under their nose whie they're trying to
read the newspaper, and look hopeful. Saying, \please pleaglease please" over
and over again, until it becomes annoying, might work quite @ll, if you're having
trouble convincing them to get o the couch. Of course, the dter thing you can do,
is turn to the front of the book, and follow the instructions n the Preface to install
Python yourself.

1.3 Your rst Python program

With any luck, if you've reached this point, you've manageda start up the Python
console, which is one way of running Python commands and praghs. When you
rst start the console (or after entering a command), you'llsee what's called a
‘prompt’. In the Python console, the prompt is three chevros, or greater-than
symbols ¢) pointing to the right:

1.4. YOUR SECOND PYTHON PROGRAM:::THE SAME AGAIN? 5

>>>

If you put enough Python commands together, you have a prograthat you
can run in more than just the console : but for the moment we're going to keep
things simple, and type our commands directly in the consqlat the prompt (>>>).
So, why not start with typing the following:

print("Hello World")

Make sure you include the quotes (that's these: " "), and hit eter at the end
of the line. Hopefully you'll see something like the followg:

>>> print("Hello World")
Hello World

The prompt reappears, to let you know that the Python consolés ready to
accept more commands.

Congratulations! You've just created your rst Python program. print is a function
that writes whatever is inside the brackets out to the conse{we'll use it more later.

1.4 Your Second Python program :::the same again?

Python programs wouldn't be all that useful if you had to typethe commands every
single time you wanted to do something|or if you wrote a program for someone,
and they had to type it in before they could use it.

The Word Processor that you might be using to write your schd@assignments,
is probably somewhere between 10 and 100 million lines of eodepending upon
how many lines you printed on one page (and whether or not youipted on both
sides of the paper), this could be around 400,000 printed peg). : or a stack of paper
about 40 metres high. Just imagine when you brought that softare home from the
shop, there would be quite a few trips back and forth to the cato carry that much
paper.::

:::and you'd better hope there's no big gust of wind while you'rearrying
those stacks. Luckily, there's an alternative to all this tping|or no one would get
anything done.

6 CHAPTER 1. NOT ALL SNAKES WILL SQUISH YOU

Open up the Text Editor by clicking on its icon. It may be in the Dock at the

bottom of the screen—=*"1, or look for this icon / T&&dit iy the Applications list
in Finder. Type the print command exactly as you typed it intothe console earlier:

print("Hello World")

Click on the File menu, then click on Save, and when you are prpted for a
le name, call it hello.py and save it into your home directoy (your home directory
is on the left under Places{ask Mum or Dad to point it out for ya).

Open the "Terminal' application again{it will automatically start up in your
home directory{and type the following:

python hello.py

You should see Hello World written to the window exactly as itvas when you
typed the command in the Python console.

So you can now see that the nice people who created Python, bakindly
saved you from having to type the same thing over and over and/er and over and

1.4. YOUR SECOND PYTHON PROGRAM:::THE SAME AGAIN? 7

over again. Like they did back in the 1980's. No, I'm seriousthey did. Go and
ask your Dad if he ever owned a ZX81 when he was younger?

If he did you can point at him and laugh.

Trust me on this one. You won't get it. But he will.?

Be prepared to run away though.

The End of the Beginning

Welcome to the wonderful world of Programming. We've start really simply with
a \Hello World" application|everyone starts with that, whe n they're learning to
program. In the next chapter we'll start to do some more usefuhings with the
Python console and then look at what goes into making a progra

2The Sinclair ZX81, released in the 1980's was one of the rst ardable home computers. A
number of young boys and girls were driven completely mad, tping in the code for games printed
in popular ZX81 magazines|only to discover, after hours of t yping, that the darn things never
worked properly.

CHAPTER 1. NOT ALL SNAKES WILL SQUISH YOU

Chapter 2
8 multiplied by 3.57 equals :::

What is 8 multiplied by 3.57? You'd have to use a calculator, auldn't you? Well
perhaps you're extremely smart and can do multiplication diactions in your head|
but that's not the point. You can also do the same thing with the Python console.
Start up the console again (see Chaptet for more information, if you've skipped
ahead for some strange reason), and once you see the promypet8 3.57 and press
the Enter key:

Python 3.0 (r30:67503, Dec 6 2008, 23:22:48)

Type "help”, "copyright", "credits" or "license" for more i nformation.
>>> 8 * 3,57

28.559999999999999

The star (*), or asterisk key (shift 8 on some keyboards), issed for multi-
plication, instead of the normal times symbol X) that you use at school (using the
star key is necessary, otherwise how would the computer knavwhether you meant
the letter x or the multiplication symbol X ?). How about an equation that's a bit

more useful?

Suppose you do chores once a week, for which you get $5 pockenay, and
you have a paper round which you do 5 times a week and get $30|momuch money
would you earn in a year?

If we were writing that on paper, we might write something lile:

(5 + 30) x 52

10 CHAPTER 2. 8 MULTIPLIED BY 3.57 EQUALS :::

Python is broken!?!?

If you just picked up a calculator and entered 8 x 3.57 the
answer showing on the display will be:

A1%

28.56
Why is Python di erent? Is it broken?

Actually, no. The reason can be found in the way oating point
(fractional numbers with a decimal place) numbers are haneil
by the computer. It's a complicated and somewhat confusing
problem for beginners, so it's best to just remember that wime
you're working with fractions (i.e. with a decimal place on 3
number), sometimesthe result won't be exactly what you were
expecting. This is true for multiplication, division, addtion or

subtraction.

Which is $5 + $30 multiplied by 52 weeks in a year. Of course, e smatrt,
and we know that 5 + 30 is 35, so the equation is really:

35 x 52

Which is easy enough to do in a calculator, or on paper. But wea do all of
these calculations with the console as well:

>>> (5 + 30) * 52
1820

>>> 35 * 52

1820

So, what if you spend $10 each week? How much do you have leftlz end
of the year? We could write the equation on paper a couple of éient ways, but
let's just type it into the console:

>>> (5 + 30 - 10) * 52
1300

That's $5 and $30 minus $10 multiplied by 52 weeks in the yeaAnd you'd
have $1300 left at the end of the year. Okay, so that's not loolg all that useful so

2.1. USE OF BRACKETS AND \ORDER OF OPERATIONS" 11

far. We can do all of that with a calculator. But we'll come bak to this later and
show how to make it much more useful.

You can do multiplication and addition (obviously), and sulbraction and divi-
sion in the Python console, along with a bunch of other mathsperations that we
won't go into now. For the moment the basic maths symbols for y®hon (actually
they're called operators) are:

+ Addition
- Subtraction
* | Multiplication
/ Division

The reason the forward-slash (/) is used for division, is that would be rather
di cult to draw a division line (plus they didn't bother to pu t a division symbol
on the computer keyboard) as you're supposed to use for weth equations. For
example if you had 100 eggs and 20 boxes, you might want to knbaw many eggs
would go in each box, so you'd show dividing 100 into 20, by wing the following
equation:

100
20

Or if you know about long division, you might write it out fully like this:

5

20)100
100

0

Or you might even write it like this:

100 20

However, in Python terms you would just type it as \100 / 20".

Which is much easier, | think. But then, I'm a book|what do | know?

2.1 Use of brackets and \Order of Operations"

We use brackets in a programming language to control what isalked \Order of
Operations”. An operation is the use of an operator (one of dse symbols in the

12 CHAPTER 2. 8 MULTIPLIED BY 3.57 EQUALS :::

table above). There are more operators than those basic syatd, but for that simple

list (addition, subtraction, multiplication and division), it's enough to know that

multiplication and division both have a higher order than adition and subtraction.

Which means you do the multiplication or division part of an guation before you
do the addition or subtraction part. In the following equaton, all the operators are
addition (+), the numbers are added in order:

>>> print(5 + 30 + 20)
55

Similarly, in this equation, there are only addition and sulbraction operators, so
again Python considers each number in the order it appears:

>>> print(5 + 30 - 20)
15

But in the following equation, there is a multiplication opeator, so the numbers 30
and 20 are considered rst. The equation is another way of sag, \multiply 30 by
20, then add 5 to the result" (multiplication rst, because it has a higher order than
addition):

>>> print(5 + 30 * 20)
605

So what happens when we add brackets? The following equatisinows the result:

>>> print((5 + 30) * 20)
700

Why is the number di erent? Because brackets control the omel of operations.
With brackets, Python knows to calculate using the operata in the brackets rst,
then do the operators outside. So that equation is another weof saying, \add
5 and 30, then multiply the result by 20". The use of bracketsan become more
complicated. There can be brackets inside brackets:

>>> print(((5 + 30) * 20) / 10)
70

In this case, Python evaluates thenner most brackets rst, then the outer brackets,
and then the other operator. So this equation is a way of saygn\add 5 and 30,
then multiply the result by 20, nally divide that result by 1 0". The result without
brackets is again slightly di erent:

2.2. THERE'S NOTHING SO FICKLE AS A VARIABLE 13

>>> 54+ 30 * 20 / 10
65

In this case 30 is multiplied by 20 rst, then the result is divded by 10, nally
5 is added to the nal result.

Remember that multiplication and division always go befoegldition and sub-
traction, unless brackets are used to control the order of eptions.

2.2 There's nothing so ckle as a variable

A ‘variable' is a programming term used to describe a place &tore things. The
“things' can be numbers, or text, or lists of numbers and tejdnd all sorts of other
items too numerous to go into here. For the moment, let's justhink of a variable
as something a bit like a mailbox.

You can put things (such as a letter or a package) in a mailbojust as you
can put things (numbers, text, lists of numbers and text, etcetc, etc) in a variable.
This mailbox idea is the way many programming languages warlBut not all.

In Python, variables are slightly di erent. Rather than being a mailbox with
things in it, a variable is more like a label which is stuck onhe outside of the
mailbox. We can pull that label o and stick it on something eke, or even tie the
label (perhaps with a piece of string) to more than one thingWe create a variable
by giving it a name, using an equals sign (=), then telling Pyhon what we want
that name to point to. For example:

14 CHAPTER 2. 8 MULTIPLIED BY 3.57 EQUALS :::

>>> fred = 100

We've just created a variable called “fred' and said that it pints to the number
100. It's a bit like telling Python to remember that number be&ause we want to use
it later. To nd out what a variable is pointing at, we can just type “print' in the
console, followed by the variable name, and hit the Enter keyror example:

>>> fred = 100
>>> print(fred)
100

We can also tell Python we want the variable fred to point at smething else:

>>> fred = 200
>>> print(fred)
200

On the rst line we say we now want fred to point at the number 20. Then, in the
second line, we ask what fred is pointing at just to prove it @gnged. We can also
point more than one name at the same item:

>>> fred = 200
>>> john = fred
>>> print(john)

200

In the code above, we're saying that we want the name (or lagbhn to point
at the same thing fred is pointing to. Of course, “fred' isn'a very useful name for
a variable. It doesn't tell us anything about what it's used br. A mailbox is easy]|
you use a mailbox for mail. But a variable can have a number of drent uses, and
can point at a whole bunch of di erent things, so we usually wat something more
informative as its name.

Suppose you started up the Python console, typed “fred = 2Q0then went
away|spent 10 years climbing Mount Everest, crossing the Shara desert, bungy-
jumping o a bridge in New Zealand, and nally, sailing down the Amazon river|
when you came back to your computer, would you remember whatdt number 200
meant (and what it was for)?

| don't think | would.

| just made it up now, and | have no idea what ‘fred = 200" meansother than
a name pointing at the number 200). So after 10 years, you'll have absolutely no
chance of remembering.

Aha! But, what if we called our variable: number.of_students

2.3. USING VARIABLE 15

>>> number_of students = 200

We can do that because variable names can be made up of lettfemambers
and (_) underscoresjalthough they cannot start with a number. If you come back
after 10 years, 'numbeof_students' still makes sense. You can type:

>>> print(hnumber_of_students)
200

And you'll immediately know that we're talking about 200 students. It's not always
important to come up with meaningful names for variables. Yo can use anything
from single letters (such as "a’) to large sentences; and stimes, if you're doing
something quick, a simple and short variable name is just aseful. It depends very
much upon whether you want to be able to look at that variable ame later and
gure out what on earth you were thinking at the time you typedit in.

this_is_also_a_valid_variable_name_but_perhaps_not_ very_useful

2.3 Using Variable

Now we know how to create a variable, how do we use it? Rememlileat equation

we came up with earlier? The one to work out how much money yalhave left at

the end of the year, if you earned $5 a week doing chores, $30 eelwon a paper
round, and spent $10 per week. So far we have:

>>> print((5 + 30 - 10) * 52)
1300

What if we turn the rst 3 numbers into variables? Try typing t he following:

>>> chores = 5
>>> paper_round = 30
>>> gspending = 10

We've just created variables named ‘chores', "‘papesund’ and "spending’. We can
then re-type the equation to get:

16 CHAPTER 2. 8 MULTIPLIED BY 3.57 EQUALS :::

>>> print((chores + paper_round - spending) * 52)
1300

Which gives the exact same answer. What if you get $2 more peeek, for
doing extra chores. Change the “chores' variable to 7, theit khe up-arrow key (")
on your keyboard a couple of times, until the equation re-agars, and hit the Enter
key:

>>> chores = 7
>>> print((chores + paper_round - spending) * 52)
1404

That's a lot less typing to nd out that you now end up with $1404 at the
end of the year. You can try changing the other variables, timehit the up-arrow to
perform the calculation again, and see what e ect it has.

If you spend twice as much money per week:
>>> spending = 20

>>> print((chores + paper_round - spending) * 52)
884

You're only left with $884 savings at the end of the year. Thiss still only
slightly useful. We haven't hit really useful yet. But for the moment, it's enough to
understand that variables are used to store things.

Think of a mailbox with a label on it!

2.4 A Piece of String?

If you're paying attention, and not just skimming through looking for the good bits,
you might remember | mentioned that variables can be used fail sorts of things|
not just numbers. In programming, most of the time we call texa “string'. Which
might seem a bit weird; but if you think that text is just “stringing together' (or
joining together) a bunch of letters, perhaps it might make dittle more sense.

Then again, perhaps it doesnt.

In which case, all you need to know, is that a string is just a mch of letters and
numbers and other symbols put together in some meaningful waAll the letters,
and numbers, and symbols in this book could make up a string.oMr name could
be a string. So could your home address. The rst Python progm we created in
Chapter 1, used a string: "Hello World'.

2.4. A PIECE OF STRING? 17

In Python, we create a string by putting quotes around the tex So we can
take our useless fred variable, and put a string inside it l&this:

>>> fred = "this is a string"

And we can see what's inside the fred variable, by typing pri(fred):

>>> print(fred)
this is a string

We can also use single-quotes to create a string:

>>> fred = 'this is yet another string'
>>> print(fred)
this is yet another string

However, if you try to type more than one line of text for your &ing using a
single quote (') or double quote ("), you'll get an error mesaye in the console. For
example, type the following line and hit Enter, and you'll gé a fairly scary error
message similar to the following:

>>> fred = "this is two
File "<stdin>", line 1

fred = "this is two
N

SyntaxError: EOL while scanning string literal

We'll talk more about errors later, but for the moment, if youwant more than
one line of text, you can use 3 single quotes:

>>> fred = "this is two
... lines of text in a single string™

Print out the contents to see if it worked:

>>> print(fred)
this is two
lines of text in a single string

By the way, you'll see those 3 dots (...) quite a few times wheyou're typing
something that continues onto another line (like a multi lire string). In fact, you'll
see it a lot more as we continue.

18 CHAPTER 2. 8 MULTIPLIED BY 3.57 EQUALS :::

2.5 Tricks with Strings

Here's an interesting question: what's 10 * 5 (10 times 5)? EBhanswer is, of course,
50.

All right, that's not an interesting question at all.

But what is 10 * 'a’ (10 times the letter a)? It might seem like anonsensical
question, but here's the answer from the World of Python:

>>> print(10 * 'a’)
aaaaaaaaaa

This works with more than just single character strings:

>>> print(20 * 'abcd’)
abcdabcdabcdabcdabcdabcdabcdabcdabcdabcdabecdabcedalmabedabecdabecdabecdabecdabedabed

Another trick with a string, is embedding values. You can dohis by using
%s, which is like a marker (or a placeholder) for a value you wato include in a
string. It's easier to explain with an example:

>>> mytext = 'l am %s years old'
>>> print(mytext % 12)
| am 12 years old

In the rst line, the variable mytext is created with a string containing some
words and a placeholder (%s). The %s is a little beacon sayilvgplace me with
something” to the Python console. So on the next line, when wall print(mytext),
we use the % symbol, to tell Python to replace the marker withite number 12. We
can reuse that string and pass in di erent values:

>>> mytext = 'Hello %s, how are you today?'
>>> namel = 'Joe’
>>> name2 = 'Jane’

>>> print(mytext % namel)
Hello Joe, how are you today?
>>> print(mytext % name?2)
Hello Jane, how are you today?

In the above example, 3 variables (mytext, namel and name2jyecreated|the
rst includes the string with the marker. Then we can print the variable “mytext’,

and again use the % operator to pass in variables 'namel' anthme2'. You can
use more than one placeholder:

2.6. NOT QUITE A SHOPPING LIST 19

>>> mytext = 'Hello %s and %s, how are you today?'
>>> print(mytext % (namel, name2))
Hello Joe and Jane, how are you today?

When using more than one marker, you need to wrap the replacent values
with brackets|so (namel, name?2) is the proper way to pass 2 vaables. A set of
values surrounded by brackets (the round ones, not the sq@aones) is called &uple,
and is a little bit like a list, which we'll talk about next.

2.6 Not quite a shopping list

Eggs, milk, cheese, celery, peanut butter, and baking sod@é/hich is not quite a full
shopping list, but good enough for our purposes. If you wardeto store this in a
variable you could create a string:

>>> shopping_list = 'eggs, milk, cheese, celery, peanut but ter, baking soda’
>>> print(shopping_list)
eggs, milk, cheese, celery, peanut butter, baking soda

Another way would be to create a list', which is a special kihof object in
Python:

>>> shopping_list = ['eggs’, 'milk', 'cheese’, 'celery’, ' peanut butter’,
... 'baking soda’']

>>> print(shopping_list)

[eggs', 'milk', ‘cheese’, 'celery’, 'peanut butter', 'ba king soda']

This is more typing, but it's also more useful. We could printhe 3rd item in
the list by using its position (called its index position), nside square brackets []:

>>> print(shopping_list[2])
cheese

Lists start at index position O|so the rst item in a list is O, the second is
1, the third is 2. That doesn't make a lot of sense to most peagl but it does to
programmers. Pretty soon, when you walk up some stairs yoludtart counting with
zero rather than one. That will really confuse your little bother or sister.

We can show all the items from the 3rd item up to the 5th in the t, by using
a colon inside the square brackets:

20 CHAPTER 2. 8 MULTIPLIED BY 3.57 EQUALS :::

>>> print(shopping_list[2:5])
[cheese’, 'celery', 'peanut butter']

[2:5] is the same as saying that we are interested in itemsifinandex position 2
up to (but not including) index position 5. And, of course, beause we start counting
with 0, the 3rd item in the list is actually number 2, and the 5h item is actually
number 4. Lists can be used to store all sorts of items. Theyratore numbers:

>>> mylist = [1, 2, 5, 10, 20]
And strings:

>>> mylist = ['a’, 'bbb’, 'ccccecec’, ‘ddddddddd’]
And mixtures of numbers and strings:

>>> mylist = [1, 2, 'a’, 'bbb]
>>> print(mylist)
[1, 2, 'a', 'bbb]

And even lists of lists:

>>> listl = ['a, 'b', 'c']
>>> list2 = [1, 2, 3]
>>> mylist = [listl, list2]
>>> print(mylist)

[[a', b, 'c, [1, 2, 3]]

In the above example, a variable called 'listl' is created thi 3 letters, ‘list2'
is created with a 3 numbers, and "'mylist' is created using tis and list2. Things
can get rather confusing, rather quickly, if you start creang lists of lists of lists of
lists: : : but luckily there's not usually much need for making thingshat complicated
in Python. Still it is handy to know that you can store all sorts of items in a Python
list.

And not just your shopping.

Replacing items

We can replace an item in the list, by setting its value in a siftar way to setting
the value of a normal variable. For example, we could changelery to lettuce by
setting the value in index position 3:

>>> shopping_list[3] = 'lettuce’
>>> print(shopping_list)

[eggs', 'milk', ‘cheese’, 'lettuce’, 'peanut butter’, 'b aking soda']

2.6. NOT QUITE A SHOPPING LIST 21

Adding more items...

We can add items to a list by using a method called "append'. Aethod is an action
or command that tells Python that we want to do something. Wdl talk more about
methods later, but for the moment, to add an item to our shopig list, we can do
the following:

>>> shopping_list.append(‘chocolate bar’)
>>> print(shopping_list)

[eggs', 'milk', ‘cheese’, 'lettuce’, 'peanut butter’, 'b aking soda’,
‘chocolate bar']

Which, if nothing else, is certainly an improved shopping st.

:.:and removing items

We can remove items from a list by using the command “del' (stidor delete). For
example, to remove the 6th item in the list (baking soda):

>>> del shopping_list[5]
>>> print(shopping_list)

[eggs', 'milk’, ‘cheese’, 'lettuce’, 'peanut butter', 'c hocolate bar

Remember that positions start at zero, so shoppintist[5] actually refers to
the 6th item.

2 lists are better than 1

We can join lists together by adding them, as if we were addingvo numbers:

>>> |istl = [1,
>>> list2 = [4, 5,
>>> print(listl ist
[1, 2, 3, 4, 5, €]

2, 3]
5, 6]
2)

We can also add the two lists and set the result to another vable:

>>> listl = [1, 2, 3]
>>> |ist2 = [4, 5, 6]
>>> list3 = listl + list2
>>> print(list3)

[1, 2, 3, 4, 5, 6]

And you can multiply a list in the same way we multiplied a strng:

22 CHAPTER 2. 8 MULTIPLIED BY 3.57 EQUALS :::

>>> istl = [1, 2]
>>> print(listl * 5)
1, 2,1,2, 1,21, 2 1, 2]

In the above example, multiplying listl by ve is another wayof saying \repeat
listl ve times". However, division (/) and subtraction (-) don't make sense when
working with lists, so you'll get errors when trying the folbwing examples:

>>> listl / 20
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for /: 'list' and i nt'

or:

>>> [istl - 20
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for -: 'type' and i nt'

You'll get a rather nasty error message.

2.7 Tuples and Lists

A tuple (mentioned earlier) is a little bit like a list, but rather than using square
brackets, you use round brackets|e.g. (' and °)'. You can use tuples in a similar
way to a list:

>>>t = (1, 2, 3)
>>> print(t[1])
2

The main di erence is that, unlike lists, tuples can't chang, once you've cre-
ated them. So if you try to replace a value like we did earlier ith the list, you'll
get another error message:

>>> {[0] = 4
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: 'tuple' object does not support item assignment

That doesn't mean you can't change the variable containingie tuple to some-
thing else. For example, this code will work ne:

2.8. THINGS TO TRY 23

>>> myvar = (1, 2, 3)
>>> myvar = ['a', 'list', 'of', 'strings']

First we create the variable myvar pointing to a tuple of 3 nurbers. Then we
change myvar to point at a list of strings. This might be a bit onfusing at rst.
But think of it like lockers in a school. Each locker has a namtag on it. You put
something in the locker, close the door, lock it, then throwveay the key. You then
peel the name tag o, wander over to another empty locker, anstick something else
in that (but this time you keep the key). A tuple is like the lodked locker. You can't
change what's inside it. But you can take the label o and stik it on an unlocked
locker, and then put stu inside that locker and take stu out|that's the list.

2.8 Things to try

In this chapter we saw how to calculate simple mathematicajuations using the
Python console. We also saw how brackets can change the tesfuin equation, by
controlling the order that operators are used. We found outolv to tell Python to
remember values for later use|using variables|plus how Pyton uses ‘strings' for
storing text, and lists and tuples, for handling more than enitem.

Exercise 1
Make a list of your favourite toys and name it toys. Make a lisof your favourite

foods and name it foods. Join these two lists and name the résfiavourites. Finally
print the variable favourites.

Exercise 2
If you have 3 boxes containing 25 chocolates, and 10 bags @ning 32 sweets, how

many sweets and chocolates do you have in total? (Note: younceo this with one
equation with the Python console)

Exercise 3

Create variables for your rst and last name. Now create a simg and use place-
holders to add your name.

24

CHAPTER 2. 8 MULTIPLIED BY 3.57 EQUALS :::

Chapter 3

Turtles, and other slow moving
creatures

There are certain similarities between turtles in the real wrld and a Python turtle.

In the real world, a turtle is a (sometimes) green reptile themoves around very
slowly and carries its house on its back. In the world of Pythg a turtle is a small
black arrow that moves very slowly around the screen. No meah of house-carrying
though.

In fact, considering that a Python turtle leaves a trail as itmoves around the
screen, this makes it less like a real turtle, and more like aa@il or a slug. However,
| suppose that a module called “slug’ wouldn't be particuldy attractive, so it makes
sense to stick with turtles. Just imagine the turtle is carryng a couple of marker
pens with it, and drawing as it goes.

In the deep, dark, and distant past, there was a simple progmaming language
called Logo. Logo was used to control a robot turtle (calledrding). Over time,
the turtle evolved from a robot that could move around the o@, to a small arrow
moving around a screen.

Which just goes to show, things don't always improve as teckogy advances|
a little robot turtle would be a lot more fun.

Python's turtle module (we'll come to modules a bit later, ba for now just
just think of a module as something we can use inside a program a little bit
like the Logo programming language, but while Logo was (isaifly limited, Python
has many more capabilities. The turtle module itself, is a @ul way to learn how
computers draw pictures on your computer screen.

Let's get started and see just how it works. The rst step is taell Python we
want to use turtle, by importing the module:

25

26 CHAPTER 3. TURTLES, AND OTHER SLOW MOVING CREATURES

|~ Turtle Graphics

Figure 3.1: An arrow representing the turtle.
>>> import turtle

Then we need to display a canvas to draw on. A canvas is justdikhe material
an artist might use for painting; in this case it's a blank spee for drawing on:

>>> t = turtle.Pen()

In this code, we call a special function (Pen) on the module ttie, which
automatically creates a canvas we can draw on. A function is r@-useable piece
of code (again we'll come to functions later) that does sontghg useful|in this
case, an object which represents the turtle is returned by éhPen function|we set
that object to the variable 't' (in e ect we're giving our tur tle canvas the name °t").
When you type the code into the Python console, you'll see adiik box (the canvas)
appear, looking something like gure3.1

Yes, that little arrow in the middle of the screen really is @ turtle. And, no,
it's not very turtle-like.

You can send instructions to the turtle, by using functions o the object that
was created (by calling turtle.Pen)|since we assigned thatobject to the variable
t, we use t to send the instructions. One turtle instruction $ forward. Forward
tells the turtle to move forward in whatever direction she idacing (I have no idea
whether it's a boy or a girl turtle, but let's just assume it's a girl-turtle for the

27

|~ Turtle Graphics

Figure 3.2: The turtle draws a line.

moment). Let's tell the turtle to move forward 50 pixels (well talk about pixels in
a minute):

>>> t.forward(50)

You should see something like gure3.2

From the turtle's point-of-view, she has moved forward 50 sps. From our
point-of-view, she has moved 50 pixels.

So, what's a pixel?

A pixel is a dot on the screen. When you look at your computer,verything
is made up of tiny (square) dots. The programs you use and theumges you play
on the computer, or with a Playstation, or an Xbox, or a Wii; ae all made up of
a whole bunch of di erent coloured dots, arranged on the saa. In fact, if you
look at your computer screen with a magnifying glass, you ntig just be able to
make out some of those dots. So if we zoom in on the canvas and time that was
just drawn by the turtle, we can see the arrow representing thturtle, is also just a
bunch of square dots, as you can see in guf@3.

We'll talk more about these dots, or pixels, in a later chapte
Next, we can tell the turtle to turn left or right:

28 CHAPTER 3. TURTLES, AND OTHER SLOW MOVING CREATURES

Dots!!

/

Figure 3.3: Zooming in on the line and the arrow.

1n 12 1

10 2
9 3

Figure 3.4: The “divisions' on a clock.
>>> t.left(90)

This tells the turtle to turn left, 90 degrees. You may not hae learned about
degrees in school so far, but the easiest way to think aboutem, is that they are
like the divisions on the face of a clock as seen in guf4.

The di erence to a clock, is that rather than 12 divisions (or60, if you're
counting minutes rather than hours), there are 360 divisi® So, if you count 360
divisions around the face of a clock, you get 90 where theragiermally a 3, 180
where there's normally a 6, and 270 where there's normally a &d 0 would be at
the top (at the start), where you normally see a 12. Figur8.5shows you the degree
divisions.

So, what does it actually mean when you call left(90)?

If you stand and face one direction, point your arm out diredy away from
your shoulder, THAT is 90 degrees. If you point your left armthat's 90 degrees
left. If you point your right arm, that's 90 degrees right. When Python's turtle
turns left, she plants her nose in one spot then swivels herdyaround the face the
new direction (same as if you turned your body to face where yoarm is pointing).

29

-
/315 45"
270 20
\225 135/
180

Figure 3.5: Degrees.

So, t.left(90) results in the arrow now pointing upwards, ashown in gure 3.6.

Let's try the same commands again a few times:

>>> t.forward(50)
>>> t.left(90)
>>> t.forward(50)
>>> t.left(90)
>>> t.forward(50)
>>> t.left(90)

Our turtle has drawn a square and is left facing the same dirgon as she
started (see gure3.7).

We can erase what's on the canvas by using clear:

>>> t.clear()

Some of the other basic functions you can use with your turtlare: reset,
which also clears the screen, but puts the turtle automatidly back into her starting
position; backward, which moves the turtle backwards; righwhich turns the turtle
to the right; up which tells the turtle to stop drawing as she noves (in other words
pick her pen up o the canvas); and nally down which tells theturtle to start
drawing again. You call these functions in the same way we'wesed the others:

30 CHAPTER 3. TURTLES, AND OTHER SLOW MOVING CREATURES

" Turtle Graphics o =i e

Figure 3.6: The turtle after turning left.

" Turtle Graphics o =i e

Figure 3.7: Drawing a square.

3.1. THINGS TO TRY 31

>>> t.reset()

>>> t.backward(100)
>>> t.right(90)

>>> t.up()

>>> t.down()

We'll come back to the turtle module shortly.

3.1 Things to try

In this chapter we saw how to use turtle to draw simple linessing left and right
turns. We saw that turtle uses degrees to turn, a bit like theimute divisions on a
clock face.

Exercise 1

Create a canvas using turtle's Pen function, and draw a reatgle.

Exercise 2

Create another canvas using turtles Pen function, and draw taiangle.

32 CHAPTER 3. TURTLES, AND OTHER SLOW MOVING CREATURES

Chapter 4

How to ask a guestion

In programming terms, a question usually means we want to ddtleer one thing, or
another, depending upon the answer to the question. This ialted anif-statement .

For example:
How old are you? If you're older than 20, you're too old!
This might be written in Python as the following if-statemert:

if age > 20:
print('you are too old!)

An if-statement is made up of an "if' followed by what is callg a "condition’
(more on that in a second), followed by a colon (:). The lineolowing the if must
be in a block|and if the answer to the question is “yes' (or True, as we call it in
programming terms) the commands in the block will be run.

A condition is a programming statement that returns ‘yes' (Tue) or no'
(False). There are certain symbols (or operators) used toeate conditions, such as:

== equals

I= not equals

> greater than

< less than

>= | greater than or equal to
<= less than or equal to

For example, if you are 10 years old, then the condition yotage == 10 would
return True (yes), but if you are not 10, it would return False Remember: don't

33

34 CHAPTER 4. HOW TO ASK A QUESTION

mix up the two equals symbols used in a condition (==), with the equals useth
assigning values (=)|if you use a single = symbol in a condition, you'll get an error
message.

Assuming you set the variable age to your age, then if you ar& Years old,
the condition: : :

age > 10

.- would again return True. If you are 8 years old, it would retun False. If
you are 10 years old, it would also return False|because the andition is checking
for greater than (>) 10, and not greater than or equal ¥ =) to 10.

Let's try a few examples:
>>> age = 10
>>> if age > 10:
print(‘got here’)

If you enter the above example into the console, what might ippen?
Nothing.
Because the value of the variable age is not greater than 1@etprint command in
the block will not be run. How about:

>>> age = 10
>>> if age >= 10:
print(‘got here’)

If you try this example, then you should see the message gotraerinted to
the console. The same will happen for the next example:

>>> age = 10

>>> if age == 10:
print('got here")
got here

4.1 Do this ::: or ELSE!l

We can also extend an if-statement, so that it does somethinghen a condition is
not true. For example, print the word "Hello' out to the conste if your age is 12,
but print "Goodbye' if it's not. To do this, we use an if-thenelse-statement (this is
another way of saying\if something is true, then dothis , otherwise dothat "):

4.2. DO THIS::: OR DO THIS::: OR DO THIS::: OR ELSE!! 35

>>> age = 12

>>> if age == 12:
print("Hello")

.. else:
print('Goodbye")

Hello

Type in the above example and you should see "Hello' printed the console.
Change the value of the variable age to another number, and o@dbye' will be
printed:

>>> age = 8

>>> if age == 12:
print("Hello")

.. else:
print(Goodbye")

Goodbye

4.2 Dothis :::ordothis :::ordothis :::or ELSE!!

We can extend an if-statement even further using elif (shofor else-if). For example,
we can check if your age is 10, or if it's 11, or if it's 12 and s;mp

1. >>> age = 12
2. >>> if age == 10:

3. print('you are 10"
4. ... elif age == 11:

5. .. print('you are 11"
6. ... elif age == 12:

7. .. print('you are 12"
8. ... elif age == 13:

9. .. print('you are 13
10. ... else:

11. .. print(‘huh?")

12.

13. you are 12

In the code above, line 2 checks whether the value of the ageiaale is equal
to 10. It's not, so it then jumps to line 4 to check whether the alue of the age
variable is equal to 11. Again, it's not, so it jumps to line 6 ® check whether the
variable is equal to 12. In this case it is, so Python moves tdi¢ block in line 7, and
runs the print command. (Hopefully you've also noticed thathere are 5 groups in
this codellines 3, 5, 7, 9 and line 11)

36 CHAPTER 4. HOW TO ASK A QUESTION

4.3 Combining conditions

You can combine conditions together using the keywords "anand "or'. We can
shrink the example above, a little, by using "or' to join the onditions together:

1. >>> if age == 10 or age == 11 or age == 12 or age == 13:
2. print('you are %s' % age)

3. ... else:

4 print(‘huh?")

If any of the conditions in line 1 are true (i.e. if age is 10r age is 11or age
is 12or age is 13), then the block of code in line 2 is run, otherwise #pn moves
to line 4. We could shrink the example a little bit more by usig the "and’,>= and
<= symbols:

1. >>> if age >= 10 and age <= 13:
2. print('you are %s' % age)
3. ... else:

4 print(‘huh?")

Hopefully, you've gured out that if both the conditions on line 1 are true
then the block of code in line 2 is run (if age is greater than arqual to 10and age
is less than or equal to 13). So if the value of the variable age 12, then “you are
12" would be printed to the console: because 12 is greater tha0 and it is also less
than 13.

4.4 Emptiness

There is another sort of value, that can be assigned to a vabike, that we didn't
talk about in the previous chapter: Nothing .

In the same way that numbers, strings and lists are all valuethat can be
assigned to a variable, "‘nothing' is also a kind of value thatan be assigned. In
Python, an empty value is referred to as None (in other programing languages, it
is sometimes called null) and you can use it in the same way ather values:

>>> myval = None
>>> print(myval)
None

None is a way to reset a variable back to being un-used, or cae h way to
create a variable without setting its value before it is used

4.4. EMPTINESS 37

For example, if your football team were raising funds for newniforms, and
you were adding up how much money had been raised, you mightmao wait until
all the team had returned with the money before you started ating it all up. In
programming terms, we might have a variable for each membef the team, and
then set all the variables to None:

>>> playerl = None
>>> player2 = None
>>> player3 = None

We could then use an if-statement, to check these variablas, determine if all
the members of the team had returned with the money they'd raed:

>>> if playerl is None or player2 is None or player3 is None:
print(Please wait until all players have returned')

.. else:
print('You have raised %s' % (playerl + player2 + player3)

The if-statement checks whether any of the variables have alue of None,
and prints the rst message if they do. If each variable has aeal value, then the
second message is printed with the total money raised. If yduy this code out
with all variables set to None, you'll see the rst message ('t forget to create the
variables rst or you'll get an error message):

>>> if playerl is None or player2 is None or player3 is None:
print(Please wait until all players have returned')
.. else:
print('You have raised %s' % (playerl + player2 + player3)
Please wait until all players have returned

Even if we set one or two of the variables, we'll still get the essage:

>>> playerl = 100
>>> player3 = 300
>>> if playerl is None or player2 is None or player3 is None:
print('Please wait until all players have returned')
.. else:
print('You have raised %s' % (playerl + player2 + player3)
Please wait until all players have returned

Finally, once all variables are set, you'll see the messagethe second block:

38 CHAPTER 4. HOW TO ASK A QUESTION

>>> playerl = 100
>>> player3 = 300
>>> player2 = 500

>>> if playerl is None or player2 is None or player3 is None:
print(Please wait until all players have returned')
.. else:
print('You have raised %s' % (playerl + player2 + player3)
You have raised 900

4.5 What's the dierence :::?

What's the di erence between 10 and '10'?

Not much apart from the quotes, you might be thinking. Well, fom reading
the earlier chapters, you know that the rst is a number and tle second is a string.
This makes them di er more than you might expect. Earlier we cmpared the value
of a variable (age) to a number in an if-statement:

>>> if age == 10:
print('you are 10

If you set variable age to 10, the print statement will be cadld:

>>> age = 10
>>> if age == 10:
print('you are 10

you are 10

However, if age is set to '10' (note the quotes), then it worn't

>>> age = '10'
>>> if age == 10:
print('you are 10

Why is the code in the block not run? Because a string is di er¢ from a
number, even if they look the same:

4.5. WHAT'S THE DIFFERENCE :::? 39

>>> ggel = 10
>>> gge2 = '10'
>>> print(agel)
10
>>> print(age2)
10

See! They look exactly the same. Yet, because one is a stringd the other is
a number, they are di erent values. Therefore age == 10 (agequials 10) will never
be true, if the value of the variable is a string.

Probably the best way to think about it, is to consider 10 boo& and 10 bricks.
The number of items might be the same, but you couldn't say thalO books are
exactly the same as 10 bricks, could you? Luckily in Python weave magic functions
which can turn strings into numbers and numbers into stringgeven if they won't
quite turn bricks into books). For example, to convert the gsing '10" into a number
you would use the function int:

>>> agge = '10'
>>> converted_age = int(age)

The variable convertedage now holds the number 10, and not a string. To convert
a number into a string, you would use the function str:

>>> age = 10
>>> converted_age = str(age)

converted age now holds the string 10, and not a number. Back to that iftastement
which prints nothing:

>>> age = '10'
>>> if age == 10:
print('you are 10"

If we convert the variablebefore we check, then we'll get a di erent result:

>>> age = '10'

>>> converted_age = int(age)

>>> if converted_age == 10:
print('you are 10"

you are 10

40

CHAPTER 4. HOW TO ASK A QUESTION

Chapter 5
Again and again

There's nothing worse than having to do the same thing over dnover and over

again. There's a reason your parents tell you to count sheep try to go to sleep,

and it has got nothing to do with the amazing sleep-inducing @vers of woolly
mammals. It's all to do with the fact that endlessly repeatiy something is boring,
and your mind should drop o to sleep more easily, if it's notdcussing on something
interesting.

Programmers don't particularly like repeating themselvegither. It puts them
to sleep as well. Which is a good reason why all programminghguages have what
is called afor-loop . For example, to print hello 5 times in Python, youcould do
the following:

>>> print("hello")
hello
>>> print("hello")
hello
>>> print("hello")
hello
>>> print("hello")
hello
>>> print("hello")
hello

Which is: : : rather tedious.

Or you could use a for-loop (note: there's 4 spaces on the setdine before
the print statement|l've highlighted them using @ so that you can see where they
are):

41

42

CHAPTER 5. AGAIN AND AGAIN

>>> for x in range(0, 5):

.. @@@@print(‘hello’)

hello
hello
hello
hello
hello

range is a function and is a quick and easy way to create a list oumbers
ranging between a start and end number. For example:

>>> print(list(range(10, 20)))
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

So in the case of the for-loop, what the code “for x in range(D)' is actually
telling Python, is to create a list of numbers (0, 1, 2, 3, 4) ahthen for each number,
store the value in the variable x. We can then use the x in our pit statement if

we want to:

>>> for x in range(0, 5):
printChello %s' % x)

hello 0
hello 1
hello 2
hello 3
hello 4

If we get rid of the for-loop again, it might look something ke this:

x =0

print(hello %s'

x=1

print('hello %s'

X =2

print(hello %s'

X =3

print(hello %s'

X =4

print('hello %s'

% X)
% X)
% X)
% X)

% X)

So the loop has actually saved us from writing an extra 8 lined code. This is
extremely useful, since the average programmer is more lahan a hippopotamus
on a hot day, when it comes to typing. Good programmers hate ohg things more

43

than once, so the for-loop is one of the more useful statemenh a programming
language.

WARNING!!

If you've been trying out the examples as you go along, yo
might have got a funny error message when typing in the code
for that for-loop. If you did, it might have looked something
like this:

c

IndentationError: expected an indented block

If you see an error like this, then you missed typing the spasé
on the second line. Spaces in Python (either a normal space
or a tab) are extremely important. We'll talk more about this
shortly: : :

3174

We don't have to stick to using range, we can also use lists we' already
created. Such as the shopping list we created in the last chep

>>> shopping_list = ['eggs’, 'milk', 'cheese’, 'celery’, ' peanut butter’,
... 'baking soda’']
>>> for i in shopping_list:
print(i)
eggs
milk
cheese
celery
peanut butter
baking soda

The above code is a way of saying, \for each item in the list, @te the value
in the variable i' and then print the contents of that variable". Again, if we got rid
of the for-loop, we'd have to do something like this:

44 CHAPTER 5. AGAIN AND AGAIN

>>> shopping_list = ['eggs’, 'milk’, ‘cheese’, 'celery’, ' peanut butter’,
... 'baking soda']

>>> print(shopping_list[0])

eggs

>>> print(shopping_list[1])

milk

>>> print(shopping_list[2])

cheese

>>> print(shopping_list[3])

celery

>>> print(shopping_list[4])
peanut butter
>>> print(shopping_list[5])
baking soda

So once again, the loop has saved us from a lot of typing.

5.1 When is a block not square?

When it's a block of code.
So what's a “block of code' then?

A block of code is a set of programming statements you want toaup together.
For example, in the for-loop example above, you might want tdo more than just
print out the items. Perhaps you'd want to buy each item and tlen print out what
it was. Supposing we had a function called "buy', you might wite code like this:

>>> for i in shopping_list:
buy(i)
print(i)

Don't bother typing that example into the Python console|be cause we don't
have a buy function and you'll get an error message if you doytrto run it|but it
does demonstrate a simple Python block made up of 2 commands:

buy(i)
print(i)

In Python, white space such as tab (when you press the tab kegnd space
(when you press the space bar) igery important. Code that is at the same position
is grouped together into blocks.

5.1. WHEN IS A BLOCK NOT SQUARE? 45

this would be block 1
this would be block 1
this would be block 1
this would be block 2
this would be block 2
this would be block 2
this would still be block 1
this would still be block 1
this would be block 3
this would be block 3
this would be block 4
this would be block 4
this would be block 4

But you must be consistent with your spacing. For example:

>>> for i in shopping_list:
buy(i)
print(i)

The second line (function buy(i)) starts with4 spaces. The third line (print(i))
starts with 6 spaces. Let's take another look at that code with visible spas (using

@ again):

>>> for i in shopping_list:
.. @@Q@@buy(i)
.. @Q@@@@@print(i)

This would cause an error. Once you start using 4 spaces, yoeed to continue
using 4 spaces. And if you want to put a blocknside another block, you'll need 8
spaces (2 x 4) at the beginning of the lines for that inner bléc

So the rst block has 4 spaces (I'll highlight them again so yocan see them):

@@@@here's my first block
@@@@here's my first block

And then the second block (which is “inside' the rst) needs 8paces:

@@@@here's my first block
@@@@here's my first block
QOO@@@@@@here's my second block
QOO@@@@@@here's my second block

Why do we want to put one block “inside' another? Usually we dthis when
the second block relies on the rst in some way. Such as our flmop. If the line

46 CHAPTER 5. AGAIN AND AGAIN

with the for-loop is the rst block, then the statements we wat to run over and
over again are in the second block|in a way they rely on the rg block to work

properly.
In the Python console, once you start typing code in a block,y@hon continues

that block until you press the Enter key on a blank line (youl see the 3 dots at the
beginning of the line showing that you're still inside a bldc

Let's try some real examples. Open the console and type thdléaving (re-
member that you need to press the space bar 4 times at the begimg of the print
lines):

>>> mylist = ['a’, 'b', 'c']
>>> for i in mylist:

print(i)

print(i)

cCooTo® W:

After the second print, press the Enter key on the blank line|which tells the
console you want to end the block. It will then print each itemin the list twice.

The next example will cause an error message to be displayed:

>>> mylist = ['a', 'b', 'c']
>>> for i in mylist:
print(i)
print(i)

File <stdin>, line 3
print(i)
N

IndentationError: unexpected indent

The second print line has 6 spaces, not 4, which Python doesstike because
it wants spacing to stay the same.

5.1. WHEN IS A BLOCK NOT SQUARE? a7

REMEMBER

If you start your blocks of code with 4 spaces you must contieu
using 4 spaces. If you start blocks with 2 spaces, you must
continue with 2 spaces. Stick to 4 spaces, because that's wha
most people use.

Here's a more complicated example with 2 blocks of code:

>>> mylist = ['a’, 'b', 'c']
>>> for i in mylist:

print(i)
for j in mylist:

print(j)

Where are the blocks in this code and what is it going to do...?

There aretwo blocks|number one is part of the rst for-loop:

>>> mylist = ['a', 'b', 'c']
>>> for i in mylist:
print(i) #
for j in mylist: #-- these lines are the FIRST block
print(j) #

Block number two is the single print line in the second for-lop:

>>> mylist = ['a', 'b', 'c']
>>> for i in mylist:

print(i)
for j in mylist:
print(j) # this line is the SECOND block

Can you gure out what this little bit of code is going to do?

It's going to print out the 3 letters from “mylist’, but how many times? If
we look at each line, we can probably gure out the number. Werow that the
rst loop statement will go through each of the items in the Ist, and then run the
commands in block number 1. So it will print out a letter, thenstart the next
loop. This loop will also go through each of the items in thedt and then run the
command in block number 2. So what we should get when this codans, is "a'
followed by "a', 'b', ‘c', then "b' followed by "a', 'b', 'c' ad so on. Enter the code
into the Python console and see for yourself:

48 CHAPTER 5. AGAIN AND AGAIN

>>> mylist = ['a’, 'b', 'c']
>>> for i in mylist:
print(i)
for j in mylist:
print(j)

OCTCPWOOTLTOTL®:

How about something more useful than just printing letters/Remember that
calculation we came up with at the beginning of this book to wé& out how much
you might have saved at the end of the year, if you earned $5 dgi chores, $30
doing a paper route and spent $10 a week?

It looked like this:

>>> (5 + 30 - 10) * 52

(That's $5 + $30 - $10 multiplied by 52 weeks in the year).

It might be useful to see how much your savings are increasidgring the year,
rather than working out what they will be at the very end. We ca do this with
another for-loop. But rst of all, we need to load those numbies into variables:

>>> chores = 5
>>> paper = 30
>>> spending = 10

We can perform the original calculation using the variables

>>> (chores + paper - spending) * 52
1300

Or we can see the savings increase over the year, by creatimpther variable
called savings, and then using a loop:

5.1. WHEN IS A BLOCK NOT SQUARE? 49

1. >>> savings = 0

2. >>> for week in range(1, 53):

3. .. savings = savings + chores + paper - spending
4. .. print(‘Week %s = %s' % (week, savings))

5 ..

On line 1 the variable “savings' is loaded with 0 (because waven't saved
anything yet).
Line 2 sets up the for-loop, which will run the commands in thélock (the block is
made up of lines 3 and 4). Each time it loops, the variable week loaded with the
next number in the range 1-52.
Line 3 is a bit more complicated. Basically, each week we watd add what we've
saved to our total savings. Think of the variable “savings'sasomething like a bank.
We add up the money we earn doing odd jobs and the paper routeyldract our
spending money and then take the rest to the bank. So in compmrtspeak, line 3
really means, \replace the contents of the variable savinggith my current savings,
plus what I've earned this week". Basically, the equals synalb (=) is a bossy piece
of code that is a way of saying, \work out some stu on the rightrst and then save
it for later, using the name on the left".
Line 4 is a slightly more complicated print statement, whiclprints the week number
and the total amount saved (for that week) to the screen. Chkahe sectionTricks
with Strings on pagel8, if this line doesn't make a lot of sense to you. So, if you
run this program, you'll see something like the following :

Week 1 = 25
Week 2 = 50
Week 3 = 75
Week 4 = 100
Week 5 = 125
Week 6 = 150
Week 7 = 175
Week 8 = 200
Week 9 = 225
Week 10 = 250
Week 11 = 275
Week 12 = 300
Week 13 = 325
Week 14 = 350
Week 15 = 375

:::going all the way up to week 52.

50 CHAPTER 5. AGAIN AND AGAIN

5.2 While we're talking about looping

A for-loop isn't the only kind of looping you can do in Python. There's also the
while-loop. If a for-loop is a loop where you know exactly wheyou'll stop running,
a while-loop is a loop where you don't necessarily know aheatitime when you'll
stop. Imagine a staircase with 20 steps. You know you can dgstlimb 20 steps.
That's a for-loop.

>>> for step in range(0,20):
print(step)

Now imagine a staircase going up a mountainside. You might muout of
energy before you reach the top. Or the weather might turn bafbrcing you to stop
climbing. This is a while-loop.

>>> step = 0
>>> while step < 10000:
print(step)
if tired == True:
break
elif badweather == True:
break
else:
step = step + 1

Don't bother running the code sample above, because we havtenothered
to create the variables tired and badweather. But it demonsates the basics of a
while-loop. While the value of variable step is less than 10000 (step 10000) the
code in the block is executed. In the block, we print the valuef step, then check
whether tired or badweather is true. If tired is true, then the break statement stops
the code in the loop executing (basically we jump out of the &p to the next line of
code immediately following the block). If badweather is tra, we also break out of
the loop. If not, then 1 is added to the value of step, and the condition of the while
loop (step< 10000) is checked again.

So the steps of a while loop are basically:

. check the condition,
. execute the code in the block,

. repeat

5.2. WHILE WE'RE TALKING ABOUT LOOPING ::: 51

More commonly, a while-loop might be created with a couple @bnditions:

>>> x = 45

>>>y = 80

>>> while x < 50 and y < 100:
X=x+1
y=y+1
print(x, y)

In this loop, we create a variable x with the value 45, and a vable y with
the value 80. There are two conditions that are checked by tHeop: whether x is
less than 50 and whether y is less than 100. While both conditis are true, the
block of code is executed, adding 1 to both variables and thgminting them. The
output of this code is just:

46 81
47 82
48 83
49 84
50 85

Maybe you can gure out why these numbers are printed?

Another common usage of a while-loop, is to create a semi&ial loop. This
is a loop that basically goes forever, or at least until someing happens in the code
to break out of it. For example:

>>> while True:
lots of code here
lots of code here
lots of code here
if some_condition == True:
break

The condition for the while loop is just "True'. So it will always run the code
in the block (thus the loop is eternal or in nite). Only if the variable somecondition
is true will the code break out of the loop. You can see a bettexample of this in
Appendix C (the section about the random module), but you might want to it
until you've read the next chapter before taking a look at it.

1We start counting at 45 in the variable x and at 80 in the variable y, and then increment (add
one) to each variable every time the code in the loop is run. Tl conditions check that x must be
less than 50 and y must be less than 100. After looping ve tims (adding 1 to each variable) the
value in x reaches 50. Now the rst condition (x < 50) is no longer true, so Python knows to stop
looping.

52 CHAPTER 5. AGAIN AND AGAIN
5.3 Things to try

In this chapter we saw how to use loops to perform repetitivesks. We used blocks
of code inside the loops for the tasks to be repeated.

Exercise 1

What do you think will happen with the following code?

>>> for x in range(0, 20):
printChello %s' % x)
if x < 9:
break

Exercise 2

When you save money in a bank, you earn interest. "Interess the money the bank
pays you for letting them use your money|each year you are pal a small amount
of money depending upon how much you've saved. This paymestusually added
back to your savings account at the bank, and it also makes yauoney.:: which
is a bit confusing, so you might have to ask Mum or Dad to explai Interest is
calculated using percentages. If you don't know what a penggage is, don't worry,
it's enough to know that if the bank is paying you 1% (1 percetinterest, you can
multiply the monetary amount by the number 0.01 (if your amout is $1000, then
you will do: 1000 * 0.01). If they're paying you 2% interest, gu can use the number
0.02, and so on. If you have $100 saved in a bank account, angyhpay you 3%
interest every year, how much money do you think you will haveach year, up to 10
years? You can write a program using a for-loop to gure it ou{Hint: remember
to add the interest to the total).

Chapter 6

Sort of like recycling :::

Think about how much rubbish you create each day. Bottled watr or bottles of
soft drink, packets of crisps, plastic sandwich wrappersas of vegetables, meat on
plastic trays, plastic shopping bags, newspapers, magaz# and so on and so on
and soon::

Now just think about what would happen if all of that trash just got dumped
in a pile at the end of your driveway.

54 CHAPTER 6. SORT OF LIKE RECYCLING :::

Of course, you probably recycle as much as possible. Whichf@tunate,
because no one likes having to climb over a rubbish heap, orettvay to school. So,
those glass bottles in the recycle bin are hopefully meltecdban, and then turned
into new jars and bottles; paper is pulped into recycled papeplastic turned into
heavier plastic goods|so your front lawn doesn't disappeatunder tonnes of garbage.
We get to reuse some of the goods we create, rather than eatagyaping hole in
the side of the world to manufacture the same things over and/er again.

Recycling or reuse, in the programming world, is just as imp@nt. Not
because your program will disappear under a pile of garbagélut if you don't re-use
some of what you're doing, you'll eventually wear your nges down to painful stubs
through over-typing.

There are a number of di erent ways to reuse code in Python (a@hin pro-
gramming languages in general), but we've seen one of the waglready, back in
Chapter 3, with the function range. Functions are one way toause code|so you
can write the code once, then use it in your programs again aradjain. Let's rst
try a simple example of a function:

>>> def myfunction(myname):

printChello %s' % myname)

The above function has a name “myfunction' and has a parametanyname'.
A parameter is a variable which is only available within the "body' of thefunction
(which is the block of code immediately after the line startig with def|in case
you're wondering, def is short for de ne). You can run the fuation by calling its
name with brackets surrounding the parameter value:

>>> myfunction('Mary')
hello Mary

We could change the function to take 2 parameters:

>>> def myfunction(firstname, lastname):
print(Hello %s %s' % (firstname, lasthame))

And then call it in a similar fashion to the rst:

>>> myfunction('Mary', 'Smith")
Hello Mary Smith

Or we could create some variables and call the function witthé variables:

55

>>> fn = 'Joe'

>>> |[n = 'Robertson’
>>> myfunction(fn, In)
Hello Joe Robertson

We can return values from a function using the return statene:

>>> def savings(chores, paper, spending):
return chores + paper - spending

>>> print(savings(10, 10, 5))
15

This function takes 3 parameters, and then adds the rst two ¢hores and
paper) before subtracting the last one (spending). The relus then returned|this
result can be used as the value of a variable (the same way we sher values to
variables):

>>> my_savings = savings(20, 10, 5)
>>> print(my_savings)
25

However, a variable that we use inside the body of a functionifbvnot be accessible
(usable), when the function has nished:

>>> def variable_test():
a =10
b =20
return a * b

>>> print(variable_test())

200

>>> print(a)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'a’ is not defined

In the above example we create a function variahfest, which multiplies two
variables (a and b) and returns the result. If we call this fuation using print, we get
the answer: 200. However if we try to print the contents of a {db for that matter),
we get the error message \'a’' is not de ned". This is somethghcalled Scopé, in
the world of programming.

Think of a function as a little island oating in the ocean|an d it's too far to
swim from the island to anywhere else. Occasionally, a planies over and drops

56 CHAPTER 6. SORT OF LIKE RECYCLING :::

bits of paper on the island (those are parameters coming intbfunction) which the

inhabitants then stick together into a message, put the meage into a bottle and
then toss the bottle into the sea (this is the return value). Wat the islanders do on
the island, and how many of them it took to make the message, ks no di erence
to the person picking up the bottle and reading the messageside. This is probably
the easiest way to think about scope|but there is one small poblem with that idea.

One of the islanders has a large pair of binoculars and can sdethe way to the

mainland. He can see what other people are doing there, andathcan a ect the

message that they're creating:

>>> x = 100

>>> def variable_test2():
a =10
b =20
return a * b * x

>>> print(variable_test2())
20000

So, even though variables a and b aren't able to be used outsidf the function,
the variable x (which was created outside the function) is @ble inside. Just think
about the islander with the binoculars, and hopefully it midpt help that idea to
make a little bit of sense.

The for-loop we created earlier to display savings over a yeaould easily be
added to a function:

6.1. BITS AND PIECES 57

>>> def yearly savings(chores, paper, spending):
savings = 0
for week in range(1, 53):

savings = savings + chores + paper - spending
print(‘Week %s = %s' % (week, savings))

Try entering that function in the console, and call it with di erent values for
chores, paper and spending:

>>> yearly_savings(10, 10, 5)

Week
Week
Week
Week
Week
Week
Week
Week
Week
Week

1

2
3
4
5
6
7
8
9
1

15
30
45
60
75
90
105
120
135

0 = 150

(continues on...)

>>> yearly_savings(25, 15, 10)

Week
Week
Week
Week
Week

1
2
3
4
5

(continues

30
60
90
120
150

on...)

This is a bit more useful than re-typing the for-loop every tne you want to
try it with a di erent value. Functions can also be grouped tagyether into something
called "'modules’, which is where Python becomes really uslef: as opposed to just
mildly useful.

More about modules shortly.

6.1 Bits and Pieces

When Python is installed on your computer, a whole pile of fustions and modules
are also installed. Some functions are available by defauliange is a function we've
already seen. le is another function we haven't use yet.

58 CHAPTER 6. SORT OF LIKE RECYCLING :::

Save As: test (xd '?
= m) | mDeskiop)
% Netwark
=l ariyabriggs O
4 ab
/A Applications i
s

Plain Text Encoding: Western (Mac OS Roman) 4

__Hide Extension (New Folder | { Cancel { Save)

Figure 6.1: The save dialog from Mac OS X Text Editor.

To see how le is used, open up the Text Editor, by clicking onhe editor icon

(A). Type a few words then save the le to the Desktop by clickingd-ile, then
Save, and entering the name “text.txt' in the entry box next © "Save As'.

Open the Python console again, and try the following:

>>> f = open('Desktop/test.txt’)
>>> print(f.read())

The contents of the le you just created should be printed to lhe console. You
can now jump ahead to the bit that says: \Continuing from here: :".

So what does that little bit of code do? The rst line calls thefunction le,
passing the name of the le you just created, as a parameter.h€ function returns
a special type of value (called an object) which representkdt le. It's not the le
itself; rather it's a bit like a big nger pointing at the le g oing \HERE IT IS!!!!"
The le object is stored in the variable f.

The next line calls a special function (read) on the le objeg to read in
the contents of the le, and print the result to the console. RBcause the variable
f contains an object, this means we need to call the read fumab using the dot
symbol (.).

Appendix B (at the back of this book) has more information
about the functions that are built into Python.

6.2. MODULES 59

6.2 Modules

We've actually seen a couple of dierent ways to reuse coderehdy. One is a
standard function, which we can create ourselves, or use tifignctions built into

Python (like range and le and int and str). Another is a specal kind of function

on objects|which we can call using the dot symbolland the next are modules;
which are a way of grouping lots of functions and objects totfeer in useful ways.
An example of this is the module “time":

>>> import time

The import command is used to tell Python we want to access a rdale. In
the above example, we're saying we want to use the ‘time' mddu We can then
call functions and objects that are available in this moduleusing the dot symbol
yet again:

>>> print(time.localtime())
(2006, 11, 10, 23, 49, 1, 4, 314, 1)

localtime is a functioninside the module time, that returns the current date
and time, broken up into individual parts|year, month, day, hour, minute, second,
day of the week, day of the year, and whether or not it's dayllg savings (1 if it
is, O if it isn't). The individual parts are stored in a tuple (seeTuples and Listson
page22. You can use another function in the time module to convert th datetime
returned by localtime, into something a bit more understandble:

>>> t = time.localtime()
>>> print(time.asctime(t))
Sat Nov 18 22:37:15 2006

We can do that all in a single line if we wanted to:

>>> print(time.asctime(time.localtime()))
Sat Nov 18 22:37:15 2006

Suppose you want to ask for someone to enter a value. You cantties using
a print statement and the module “sys'[imported the same waywe imported the
time module:

60 CHAPTER 6. SORT OF LIKE RECYCLING :::

import sys

Inside the sys module is an object called “stdin' (short fortandard input).
stdin has a rather useful method (or function) called readte|which is used to
read a line of text someone types on the keyboard (up until thpoint when they
press the Enter key). You can test readline, by entering theoflowing command in
the Python console:

>>> print(sys.stdin.readline())

If you then type some words, and press the Enter key, what yotg typed will
be printed to the console. Think back, for a moment, to the cagwe wrote earlier,
using an if-statement:

if age >= 10 and age <= 13:
print('you are %s' % age)
else:
print(‘huh?")

Rather than creating the variable age beforehand, we can n@agk someone to
enter the value instead. How about rst turning the code intoa function:::

>>> def your_age(age):
if age >= 10 and age <= 13:
print('you are %s' % age)
else:
print(huh?")

Which can be called, by passing a number as the parameter valuwe'll test
that it works properly, rst:

>>> your_age(9)
huh?

>>> your_age(10)
you are 10

Now we know there are no problems with our function, we can chge the
function to ask for a person's age instead:

6.3. THINGS TO TRY 61

>>> def your_age():
print(Please enter your age')
age = int(sys.stdin.readline())
if age >= 10 and age <= 13:
print('you are %s' % age)
else:
print(huh?")

Because readline() returns what a person typed as text (in loér words, a
string), we need to use the function int to convert it to a numler (this so it will
work correctly in the if-statement|check What's the di erence on page38for more
information about this). To try it for yourself, call the your_age function without
any parameters, then type some text when "Please enter youyea appears:

>>> your_age()
Please enter your age
10

you are 10

>>> your_age()
Please enter your age
15

huh?

The important thing to note here is that even though you're pjyng in a number (in
the above case 10 or 15), readline always returns a string.

sys and time are just two of the many modules that are in
cluded with Python. For more information on some (but not
all) Python modules, see AppendixXC.

6.3 Things to try

In this chapter we saw how to do recycling in Python; throughe use of functions
and modules. We saw a little bit about the “scope' of variabl®w variables outside
of functions can be “seen' inside, whereas variables insicennot be seen outside,
and learned how to create our own functions using def

Exercise 1

In exercise 2 in Chapter5, we created a for-loop to work out the interest we might
earn from $100 over a period of 10 years. That for-loop couldsly be turned into

62 CHAPTER 6. SORT OF LIKE RECYCLING :::

a function. Try creating a function which takes a starting anount, and a rate of
interest. You could call the function using code like:

calculate_interest(100, 0.03)

Exercise 2

Take the function you've just created, and make it calculatenterest for di erent
periods|such as 5 years or 15 years. Perhaps you could call ising code like:

calculate_interest(100, 0.03, 5)

Exercise 3

Perhaps rather than a simple function, where we pass in the lues as parame-
ters, we can make a mini-program which asks someone for thdues (using the
sys.stdin.readline() function). In this case, we'll call he function without any pa-
rameters at all:

calculate_interest()

To create this mini-program requires a function that we havet talked about yet:
oat. The oat function is a bit like the int function, except it converts strings
into what is called oating point numbers (which we discussg briey in Chap-
ter 2). Floating point numbers are numbers with a decimal place). such as 20.3
or 2541.933.

Chapter 7

A short chapter about Files

You probably know what a le is already.

If your parents have a home o ce, chances are they've got a leabinet of some sort.
Various important papers (mostly boring adult stu) are stored in those cabinets,
usually in cardboard folders labelled with letters of the ghabet, or months of the
year. Files on a computer are rather similar to those cardboé folders. They have
labels (the name of the le), and are used to store importantnformation. The
drawers on a le cabinet, which might be used to organise papeork so they are
easier to nd, are similar to directories (or folders) on a amputer.

We've already created a le object, using Python, in the premus chapter. The
example looked like this:

>>> f = open('Desktop/test.txt’)
>>> print(f.read())

A le object doesn't just have the function read. After all, le cabinets
wouldn't be very useful if you could only open a drawer and tak papers out, but
could never put them back in. We can create a new, empty le, bpassing another
parameter when we call the le function:

>>> f = open(‘'myfile.txt', 'w')

'w' is the way we tell Python we want to write to the le object, and not read
from it. We can now add information to the le using the function write.

>>> f = open('myfile.txt', 'w')
>>> f.write('this is a test file')

Then we need to tell Python when we're nished with the le, ard don't want
to write to it any more|we use the function close to do this.

63

64 CHAPTER 7. A SHORT CHAPTER ABOUT FILES

>>> f = open('myfile.txt', 'w')
>>> f.write('this is a test file')
>>> f.close()

If you open the le using your favourite editor, you will see ti contains the
text: \this is a test le". Or better yet, we can use Python to read it in again:

>>> f = open('myfile.txt')
>>> print(f.read())
this is a test file

Chapter 8

Turtles galore

Let's get back to the turtle module we started looking at in Clapter 3. Remember
that to setup the canvas for the turtle to draw on, we need to import the module
and the create the "Pen’ object:

>>> import turtle
>>> t = turtle.Pen()

We can now use basic functions to move the turtle around the oeas and draw
simple shapes, but it's more interesting to use some of whative already covered
in the previous chapters. For example, the code we used to ate a square earlier
was:

>>> t.forward(50)
>>> t.left(90)
>>> t.forward(50)
>>> t.left(90)
>>> t.forward(50)
>>> t.left(90)

We can rewrite this using a for-loop:

>>> t.reset()

>>> for x in range(1,5):
t.forward(50)
t.1eft(90)

This is certainly less typing, but for something a bit more iteresting, try the
following:

65

66 CHAPTER 8. TURTLES GALORE

" Turtle Graphics i =

Figure 8.1: The turtle drawing an 8-point star.

>>> treset()

>>> for x in range(1,9):
t.forward(100)
t.left(225)

This code produces the 8-point star shown in gures.1 (the turtle turns 225
degrees, each time it goes forward 100 pixels).

With a di erent angle (175 degrees), and a longer loop (37 ties), we can make a
star with even more points (shown in gure8.2):

>>> t.reset()

>>> for x in range(1,38):
t.forward(100)
t.left(175)

Or how about the following code, which produces the spirake star gure 8.3,

>>> for x in range(1,20):
t.forward(100)
t.1eft(95)

" Turtle Graphics i e e

Figure 8.2: A star with a lot more points.

" Turtle Graphics i e e

Figure 8.3: A star with a lot more points.

67

68 CHAPTER 8. TURTLES GALORE

. Turtle Graphics i i

Figure 8.4: A 9-point star.

Here's something a bit more complicated:

>>> t.reset()
>>> for x in range(1,19):
t.forward(100)
if Xx % 2 == 0:
t.left(175)
else:
t.left(225)

In the above code, we check to see if the variable x contains amen number.
To do this we use what is called a modulo operator (%), in the pression: X % 2

X % 2 is equal to zero, if the number in variable x can be divideloly two, with
nothing left over (no remainder)|if this doesn't make much sense, don't worry too
much about it, just remember you can use ‘X % 2 == Q' to check if aumber in a
variable is an even number. The result of running this code the 9-point star in
gure 8.4

You don't have to just draw stars and simple geometric shapgasing a com-
bination of the functions calls, your turtle can draw many dierent things. For
example:

8.1. COLOURING IN 69

t.color(1,0,0)
t.begin_fill()
t.forward(100)
t.1eft(90)
t.forward(20)
t.1eft(90)
t.forward(20)
t.right(90)
t.forward(20)
t.1eft(90)
t.forward(60)
t.left(90)
t.forward(20)
t.right(90)
t.forward(20)
t.1eft(90)
t.forward(20)
t.end_fill()
t.color(0,0,0)
t.up()
t.forward(10)
t.down()
t.begin_fill()
t.circle(10)
t.end_fill()
t.setheading(0)
t.up()
t.forward(90)
t.right(90)
t.forward(10)
t.setheading(0)
t.begin_fill()
t.down()
t.circle(10)
t.end_fill()

Which is a long, long, long, drawn-out way to draw the rather gly and primitive-
looking car in gure 8.5. But it does demonstrate a couple of other turtle functions:
color, to change the colour of the pen being used by the turtldl, which lIs in an
area of the canvas; and circle, to draw a circle of a particulaize.

8.1 Colouring in

The color function takes 3 parameters. The rst parameter i@ value for red, the
second is a value for green, and the last is a value for blue.

70 CHAPTER 8. TURTLES GALORE

" Turtle Graphics i T e

s

Figure 8.5: The turtle is terrible at drawing cars!

Why red, green and blue?

If you've ever played around with di erent colours of paint,you'll already know
part of the answer to that question. When you mix two di erent paint colours, you
get another colout. When you mix blue and red together, you get purpte : and
when you mix too many colours together, you usually get a mugdbrown. On
a computer you can mix colours together in a similar fashionput red and green
together to get yellow|except with a computer, we are combiring colours of light,
not colours of paint.

Even though we're not using paint, for a moment, think about 3arge pots of
paint. One red, one green, and one blue. Each pot is full, so'ivsay that a full
pot of paint has a value of 1 (or 100%). We then pour all of the depaint (100%)
into a vat, followed by all of the green paint (again 100%). Aér a bit of mixing,
we get a yellow colour. Let's draw a yellow circle using turd:

>>> t.color(1,1,0)
>>> t.begin_fill()
>>> t.circle(50)
>>> t.end_fill()

So in the above example, we call the color function with 100%rfred, 100% for

LActually, the three primary paint colours are red, yellow and blue, and not the red/greeitblue
(RGB) on a computer.

8.1. COLOURING IN 71

green and 0% for blue (in other words, 1, 1, and 0). To make it si@r to experiment
with di erent colours, let's turn that into a function:

>>> def mycircle(red, green, blue):
t.color(red, green, blue)
t.begin_fill()
t.circle(50)
t.end_fill()

We can draw a bright green circle, by using all of the green pdi(1 or 100%):
>>> mycircle(0, 1, 0)

And we can draw a darker green circle, by using only half the gen paint (0.5 or
50%):

>>> mycircle(0, 0.5, 0)

Here's where thinking about paint doesn't make much senseyamore. In the
real world, if you've got a pot of green paint, it doesn't mater how much you use,
it's still going to look the same. With colours on a computerpecause we're playing
with light, using less of that colour generally results in a @rker shade. It's the same
as if you shine a torch at night, you get a yellowish lightjwhen the batteries start
to run out and the light begins to fade, the yellow colour getslarker and darker.
Just to see for yourself, try drawing a circle with full red ad half red (1 and 0.5),
and full blue and half blue.

>>> mycircle(1, 0, 0)
>>> mycircle(0.5, 0, 0)

>>> mycircle(0, 0, 1)
>>> mycircle(0, 0, 0.5)

Di erent combinations of red, green and blue will produce auge variety of colours.
You can get a gold colour by using 100% of red, 85% of green arabiue:

>>> mycircle(1, 0.85, 0)

A light pink colour can be achieved by combining 100% red, 70%een and 75%
blue:

72 CHAPTER 8. TURTLES GALORE

>>> mycircle(1, 0.70,0.75)

And you get orange by combining 100% red and 65% green; andwroby combining
60% red, 30% green and 15% blue:

>>> mycircle(1, 0.65, 0)
>>> mycircle(0.6, 0.3, 0.15)

Don't forget, you can clear the canvas by using t.clear().

8.2 Darkness

Here's a question for you: What happens when you turn all theghts o at night?
Everything goes black.

The same thing happens with colours on a computer. No light egls no colour.
So a circle with O for red, O for green and O for blue:

>>> mycircle(0, 0, 0)

Produces the black spot in gure8.6.

The opposite is true; if you use 100% red, 100% green and 100i4ebyou get
white. Use the following code and the black circle will be wexd out again:

>>> mycircle(1,1,1)

8.3 Filling things

You've probably gured out by now that the Il function is swi tched on by passing
the parameter "1', then switched o again with "0'. When you witch it o, the
function actually lls in the area you've drawn|assuming yo u've drawn at least
part of a shape. So we can easily draw a lled in square by usingde we created
earlier. First, let's turn it into a function. To draw a square with turtle we do:

8.3. FILLING THINGS 73

Figure 8.6: A black hole!

>>> t.forward(50)
>>> t.left(90)
>>> t.forward(50)
>>> t.left(90)
>>> t.forward(50)
>>> t.left(90)
>>> t.forward(50)
>>> t.left(90)

So as a function, we might want to pass the size of the squareaparameter.
This makes the function a little more exible:

>>> def mysquare(size):
t.forward(size)
t.left(90)
t.forward(size)
t.1eft(90)
t.forward(size)
t.left(90)
t.forward(size)
t.1eft(90)

We can test our function by calling:

74 CHAPTER 8. TURTLES GALORE
>>> mysquare(50)

That's a start, but it's not quite perfect. If you look at the code above, you'll
see a pattern. We repeat: forward(size) and left(90) fourriies. That's a waste of
typing. So we can use a for-loop to do it for us (pretty much thesame as we did
earlier):

>>> def mysquare(size):
for x in range(0,4):
t.forward(size)
t.1eft(90)

That's a big improvement on the previous version. You can téshe function
with di erent sizes:

>>> t.reset()

>>> mysquare(25)
>>> mysquare(50)
>>> mysquare(75)
>>> mysquare(100)
>>> mysquare(125)

And the turtle should draw something like gure 8.7.

Now we can try a lled square. First of all, reset the canvas ae again:

>>> t.reset()

Then, turn on lling, and call the square function again:

>>> t.begin_fill()
>>> mysquare(50)

You'll still see an empty square until you turn Iling o :

>>> t.end_fill()

Which produces something like the square in gur&.8,

How about changing the function so that we can either draw a léd or an
un lled square? We need another parameter, and slightly mercomplicated code,
to do this:

8.3. FILLING THINGS

Figure 8.7: Lots of squares.

Figure 8.8: A black square.

75

76 CHAPTER 8. TURTLES GALORE

>>> def mysquare(size, filled):

if filled == True:
t.begin_fill()

for x in range(0,4):
t.forward(size)
t.left(90)

if filled == True:
t.end_fill()

The rst two lines check to see if the value of parameter " lld' is set to True.
If it is, then lling is turned on. We then loop four times to draw the four sides of
the rectangle, before checking a second time whether the pareter " lled' is True,
and if so, turn lling o once again. You can now draw a lled square by calling:

>>> mysquare(50, True)

And an un lled square by calling:

>>> mysquare(150, False)

about it, looks like a weird square eye.

You can draw all sorts of shapes and Il them with colour. Les turn the star,
we drew earlier, into a function. The original code lookedKe this:

>>> for x in range(1,19):
t.forward(100)
if x % 2 == O:
t.left(175)
else:
t.left(225)

We can use the same if-statements from the mysquare functioand use the
size parameter in the forward function.

8.3. FILLING THINGS 77

Figure 8.9: A square eye.

>>> def mystar(size, filled):
if filled:
t.begin_fill()
for x in range(1,19):
t.forward(size)
if x % 2 == 0:
t.left(175)
else:
t.left(225)

RBPBoOoo~NoOORARWNE

0. ... if filled:
1. . t.end_fill()

In lines 2 and 3, we switch lling on, depending upon the valuef the parameter
lled (turn lling on, if the parameter is set to True, turn it o, if the parameter is
set to False). We do the reverse in lines 10 and 11 (switch tig back o again).
The other di erence about this function is that we pass the gie of the star in the
parameter size, and use this value in line 5.

Now let's set the colour to gold (you might remember that goldcan be made
by using 100% of red, 85% of green and no blue), and then calktfunction:

78 CHAPTER 8. TURTLES GALORE

Figure 8.10: A gold star.

>>> t.color(1, 0.85, 0)
>>> mystar(120, True)

The turtle should draw the gold star in gure 8.10 We can add an outline for the
star, by changing the colour again (this time to black) and rérawing the star with
lling turned o

>>> t.color(0,0,0)
>>> mystar(120, False)

Thus the star now looks like gure8.11

8.4 Things to try

In this chapter we learned about the turtle module, using ibtdraw a few basic
geometric shapes. We used functions in order to re-use sonfeoar code, to make
it easier to draw shapes with di erent colours.

8.4. THINGS TO TRY 79

Figure 8.11: A star with an outline.

Exercise 1

We've drawn stars, squares and rectangles. How about an ogtan? An octagon is
an 8 sided shape. (Hint: try turning 45 degrees).

Exercise 2

Now convert the octagon drawing code into a function which Wi Il it with a colour.

80

CHAPTER 8. TURTLES GALORE

Chapter 9
A bit graphic

The problem with using a turtle todraw, is ::that::::::turtles:::::::::are::mint:
really:: ;.o slow.

Even when a turtle is going at top speed, it's still not going hat fast. For
turtles, this is not really a problem|they've got time to was te|but when you're
talking about computer graphics, it is. If you've got a Nintexdo DS, a Gameboy
Advance, or play games on your computer, think for a moment &t the graphics
(what you see displayed on the screen). There are a number aofedent ways that
graphics are presented in games: there are 2d (or two-dimemsal) games, where
the images are at and the characters generally only move umd down, and left
and right|quite common in hand-held devices like the Gamebg, Nintendo DS, or
mobile phones. There are pseudo-3d (almost three-dimensa) games, where the
images look a little more real, but still the characters gemally only move up and
down, left and rightjagain quite common in hand-held devices|and nally there
are 3d games, where the pictures drawn on the screen attempt inimic reality.

All these kinds of graphic displays have one thing in commonihe need to
draw on the computer screen very quickly. Have you ever triggbur own animation?
Where you get a blank pad of paper, and in the corner of the rspage you draw
something (perhaps a stick gure), on the bottom corner of th next page you draw
the same stick gure but you move its leg slightly. Then on thenext page you draw
the gure again with the leg moved a little more. Gradually yar go through each
page drawing on the bottom corner. When you've nished, youick through the
pages, and if you ick through fast enough it appears as if thstick gure is moving.
This is the basics of how all animation is done|whether it's the cartoons you're
watching on TV or the games that you play on your games consote computer.
You draw something, then you draw it again but slightly changd to give the illusion
of movement. Which is why a turtle is no good for doing most ggics. In order to

81

82 CHAPTER 9. A BIT GRAPHIC

make an image look like it is moving, you have to draw each “free' of the animation
very quickly.

Three-dimensional graphics is done in a considerably di ent manner to two-
dimensional graphics, but still, the basic idea is the samdy the time your turtle
has nished drawing even a small portion of the picture it wold be time to turn
the page and start drawing the next ong :

9.1. QUICK DRAW 83

9.1 Quick Draw

Each programming language has a di erent method to draw on #hscreen. Some
methods are fast and some are slow, which means that prograenms who develop
games for a living have to be very careful about the languaghdy choose to work
in.

Python has a number of di erent ways to do graphics as well (tluding turtle,
which we've already used), but the best methods (from a graps point of view)
are usually modules and libraries of code that are not incled with Python itself.
You will probably have to be programming for a few years beferyou'll be able to
gure out how to install and use one of those complex librarge

Luckily, there is a module, which comes with Python, that we &n use to do
basic graphics (at a slightly faster speed than a turtle). Rbaps even fast enough
to be called the Quick Draw Turtle.

The module is called tkinter (a strange name, which standsifoTk interface")
and it can be used to create full applications (you could evetreate a simple Word
Processor program if you wanted to) as well as simple drawinijVe could create a
simple application with a button using the following code:

84 CHAPTER 9. A BIT GRAPHIC

>>> from tkinter import *

>>> tk = Tk()

>>> btn = Button(tk, text="click me")
>>> btn.pack()

oD PE

In line 1, we import the contents of the Tk module, so we can ugbem|the
most useful of these is Tk, which creates a basic window to whiwe can then add
things. After you type in line 2, that window will suddenly appear on the screen.
In line 3, we create a new Button and assign it to the variableth. The button
is created by passing the tk object as a parameter, along withnamed parameter
with the words “click me'.

Named Parameters

This is the rst time we've used 'named parameters'. Thes
work just like normal parameters, except they can appear i
any order, so we need to provide a name.

For example, suppose we had a function rectangle which togk
two parameters width and height. Normally we might call this
function using something like rectange(200, 100), meaninge
want to draw a rectangle 200 pixels wide by 100 pixels high.
But what if the parameters could appear in any order? How
do we know which is the width and which is the height?

In this case, it's better to say exactly which is which, for ex
ample: rectangle(height=100, width=200). In actual fact,the
whole idea of named parameters is a bit more complicated than
this, and can be used in a number of di erent ways to make
functions a lot more exible|but that's the subject of a more
advanced book than this introduction to programming.

D

=)

1%

The nal line (4) is an instruction to tell the button to draw i tself. At which
point, the window that was created in line 2 will shrink to thesize of a small button
containing the words “click me'. It will look something likethis:

The button doesn't do much but you can, at least, click it. We an make it

9.2. SIMPLE DRAWING 85

do something by changing the previous example a little (maksure you close the
window we created earlier). First we can create a function tprint out some text:

>>> def hello():
print('hello there’)

Then modify the example to use this function:

>>> from tkinter import *

>>> tk = Tk()

>>> btn = Button(tk, text="click me", command=hello)
>>> btn.pack()

The named parameter ‘command' says that we want to use the teefunction,
when the button is clicked. If you now click the button, you'l see \hello there"
written out to the console|printed once each time the button is clicked.

9.2 Simple Drawing

Buttons aren't very useful when you want to draw things on thescreen|so we need

to create and add a di erent sort of component: a Canvas. Whetreating a canvas,
unlike a button (which takes text and command parameters), & need to pass the
width and height (in pixels) of the canvas. Apart from that, the code is similar to
the button code:

>>> from tkinter import *

>>> tk = Tk()

>>> canvas = Canvas(tk, width=500, height=500)
>>> canvas.pack()

Similar to the button example, a window will appear when youype line 2.
When you “pack’ the canvas on line 4, it will suddenly increasin size. We can
draw a line onto the canvas using pixel coordinates. Coordites are the positions
of pixels on a canvas. On a Tk canvas, coordinates describewhtar across the
canvas (from left to right) and how far down the canvas (top tdottom) to move.
The “left-right part' is called the x-axis. The ‘top-bottom part' is called the y-axis.

Since the canvas is 500 pixels wide, and 500 pixels high, tleminates of the
bottom-right corner of the screen are 500,500. So the line igure 9.1 can be drawn
by using start coordinates of 0,0 and end coordinates of 5800:

86 CHAPTER 9. A BIT GRAPHIC

Figure 9.1: Canvas x and y axis.

>>> from tkinter import *

>>> tk = Tk()

>>> canvas = Canvas(tk, width=500, height=500)
>>> canvas.pack()

>>> canvas.create_line(0, 0, 500, 500)

Now, to do the same thing with turtle, would have required theollowing code:

>>> import turtle

>>> turtle.setup(width=500, height=500)
>>> t = turtle.Pen()

>>> t.up()

>>> t.goto(-250,250)

>>> t.down()

>>> t.goto(500,-500)

So the tkinter code is already an improvement, being shortemd less compli-
cated. There are a large number of methods available on thenvas object, some
of which aren't very useful to us, but let's take a look at somexamples of the
interesting functions.

9.3. DRAWING BOXES 87
9.3 Drawing Boxes

In turtle, we drew a box by moving forward, turning, moving foward, turning

again and so on. Eventually you can draw a rectangular or squabox, just by
changing how far you move forward. With tkinter, drawing a sgare or rectangle is
considerably easier|you just need to know the coordinatesdr the corners.

>>> from tkinter import *

>>> tk = Tk()

>>> canvas = Canvas(tk, width=400,height=400)
>>> canvas.pack()

>>> canvas.create_rectangle(10, 10, 50, 50)

1

In the above example, we create a canvas that is 400 pixels wjdand 400
pixels high, and then we draw a square in the top left corner lfe top left corner
is 10 pixels in from the top left, and and the bottom right corer is 50 pixels in
from the bottom right). You might be wondering what the numbe is that appeared
when you typed createrectangle and earlier when calling creaténe? That's an
identifying number for the shape you've just drawn (whether line or a square or a
circle). We'll come back to that number later.

The parameters that are passed to createectangle are therefore: top left x
position, top left y position, bottom right x position and bottom right y position.
To save all that typing, we'll just refer to those as x1, yl and?2, y2. We can draw
a rectangle by making x2 a larger number:

>>> canvas.create_rectangle(100, 100, 300, 50)

Or by making y2 a bit larger:

>>> canvas.create_rectangle(100, 200, 150, 350)

That last rectangle is basically saying: go 100 pixels acsothe canvas (from
the top left), and 200 pixels down, then draw a box across to @5ixels and down
to 350 pixels. At the moment you should have something like @re 9.2 on your
canvas.

Let's try lling the canvas with di erent sized rectangles. We can do this using
a module called random. First import the random module:

>>> import random

Then we can create a function using a random number for the aalinates at
the top and bottom corners. The function to use is called ramdnge:

88 CHAPTER 9. A BIT GRAPHIC

Figure 9.2: tkinter boxes.

>>> def random_rectangle(width, height):

x1 = random.randrange(width)
yl = random.randrange(height)
x2 = random.randrange(x1 + random.randrange(width))

y2 = random.randrange(yl + random.randrange(height))
canvas.create_rectangle(x1, y1, x2, y2)

In the rst two lines we create variables for the top left cormer of the rectangle
using randrange, passing the width and the height. The randnge function takes
a number as an argument (actually, see Appendi€ for more uses of randrange)|
so randrange(10) gives you a number between 0 and 9, randra(t0) gives you a
number between 0 and 99, and so on. The next two lines createiadles for the bot-
tom right corner of the rectangle (or square!)|we use the topleft coordinate (x1 or
y1) and add a random number to that variable. Finally we call he createrectangle
function using those variables. You can try out the randommectangle function by
passing the width and height of the canvas you created:

>>> random_rectangle(400, 400)

Or to Il the screen, how about creating a loop to call it a numker of times:

9.3. DRAWING BOXES 89

Figure 9.3: A mess of rectangles.

>>> for x in range(0, 100):
random_rectangle(400, 400)

Which produces a bit of a mess (gured.3, but is interesting nonetheless.

Remember, back in the last chapter, we set the colour the tud drew with
using percentages of the 3 colours: red, green and blue? Withnter you can
set the colour using similar ideas, but unfortunately, it'sslightly more complicated
than with turtle. First of all, let's change the random rectangle function to pass in
a colour to Il the rectangle with:

>>> def random_rectangle(width, height, fill_colour):

x1 = random.randrange(width)

yl = random.randrange(height)

x2 = random.randrange(x1 + random.randrange(width))

y2 = random.randrange(yl + random.randrange(height))
canvas.create_rectangle(x1, y1, x2, y2, fill=fill_co lour)

The canvas createrectangle function can take a parameter " II' which speci 8
the Il colour. We can now pass this into the function. Try the following:

90 CHAPTER 9. A BIT GRAPHIC

>>> random_rectangle(400, 400, 'green’)
>>> random_rectangle(400, 400, 'red’)

>>> random_rectangle(400, 400, 'blue’)
>>> random_rectangle(400, 400, 'orange’)
>>> random_rectangle(400, 400, 'yellow')
>>> random_rectangle(400, 400, 'pink’)
>>> random_rectangle(400, 400, 'purple’)
>>> random_rectangle(400, 400, 'violet))
>>> random_rectangle(400, 400, 'magenta’)
>>> random_rectangle(400, 400, 'cyan’)

Some, and maybe all, of those named colours will work. But senof them
might result in an error message (it depends on whether yoe'using Windows, Mac
OS X or Linux). So far, that's pretty easy. But what about a cobur like gold? In
the turtle module, we created gold using 100% of red, 85% ofegn and no blue. In
tkinter we can create gold using:

>>> random_rectangle(400, 400, '#ffd800")

Which, all in all, is a pretty strange way to create a colour. d800' is called
hexadecimal, and is another way to represent numbers. Expteng how hexadecimal
numbers work would take a few more pages than we have to spaoe this book, so
for the moment, you can use the following function to create hexadecimal colour:

>>> def hexcolor(red, green, blue):
red = 255*(red/100.0)
green = 255*(green/100.0)
blue = 255*(blue/100.0)
return '#%02x%02x%02x" % (red, green, blue)

Calling hexcolor with 100% for red, 85% for green and 0% forud, results in
the hexadecimal for a gold colour we just used:

>>> print(hexcolor(100, 85, 0))
#ffd800

You can create a bright purple colour using 98% of red, 1% ofegn, and 77% of
blue:

>>> print(hexcolor(98, 1, 77))
#f902c4

You can use that with the randomrectangle function we created earlier:

>>> random_rectangle(400, 400, hexcolor(98, 1, 77))

9.4. DRAWING ARCS 91

Figure 9.4: A purple rectangle.

9.4 Drawing Arcs

An arc is a part of a circle, but to draw one with tkinter you neé to draw a rectangle.
Which doesn't make a lot of sense until you try to draw a rectagle and then draw
an arc inside it (see gure9.5. The code to draw this arc might look something
like this:

canvas.create_arc(10, 10, 200, 100, extent=180, style=AR C)

This places the top left corner of the rectangle at the coomdates 10, 10 (that's
10 pixels across, 10 pixels down), and the bottom right cornef the rectangle at
the coordinates 200, 100 (200 pixels across, 100 pixels dpwhhe next parameter
(a named parameter) “extent' is used to specify the degrees of the da@f the arc.
If you don't know anything about degrees in a circle (or arc)then just remember
that if you think about a circle, 180 degrees would be half ohe circle (or half the
arc), 359 degrees would be a full circle, 90 degrees is a qaamf a circle and 0
degrees is.: well, nothing at all. Here's some code that draws a bunch of drent
arcs down the page so you can see the basic di erences when ge di erent degrees
(you can see the examples in guré.6):

92 CHAPTER 9. A BIT GRAPHIC

Figure 9.5: An arc tting inside a rectangle.

>>> canvas.create_arc(10, 10, 200, 80, extent=45, style=A RC)

>>> canvas.create_arc(10, 80, 200, 160, extent=90, style= ARC)

>>> canvas.create_arc(10, 160, 200, 240, extent=135, styl e=ARC)
>>> canvas.create_arc(10, 240, 200, 320, extent=180, styl e=ARC)
>>> canvas.create_arc(10, 320, 200, 400, extent=359, styl e=ARC)

9.5 Drawing Ovals

While the last statement in the above example draws an oval,oy can also draw
ovals using the createoval function. Similar to drawing arcs, an oval is drawn insie
the boundaries of a rectangle. For example, the following de:

>>> tk = Tk()

>>> canvas = Canvas(tk, width=400,height=400)
>>> canvas.pack()

>>> canvas.create_oval(1, 1, 300, 200)

This example draws an oval in the (imaginary) square drawn ém pixel posi-
tions 1,1 to 300,200. If we draw a red rectangle with the sameardinates, you can
properly see how the oval is drawn inside (guré®.7):

>>> canvas.create_rectangle(1, 1, 300, 200, outline="#ff 0000")

To draw a circle, rather than an elliptical oval, the imaginay rectangle should be a
square (which produces the circle in gure®.9):

>>> tk = Tk()

>>> canvas = Canvas(tk, width=400,height=400)
>>> canvas.pack()

>>> canvas.create_oval(1, 1, 300, 300)

9.5. DRAWING OVALS

Figure 9.6: Di ering degrees of arcs.

Figure 9.7: The outline of an oval.

93

94

CHAPTER 9. A BIT GRAPHIC

Figure 9.8: The outline of an oval inside a rectangle.

Figure 9.9: A simple circle.

9.6. DRAWING POLYGONS 95

Figure 9.10: A simple triangle.

9.6 Drawing Polygons

A polygon is any shape with 3 or more sides. Triangles, squareectangles, pen-
tagons, hexagons, and so on are all examples of polygons. Adlws these more
regular shapes, you can also create irregular shaped polggoFor example, to draw
a triangle, you need to provide 3 sets of coordinates (thats position across plus a
position down) for each point of the triangle (creating the tiangle in gure 9.10:

>>> from tkinter import *

>>> tk = Tk()

>>> canvas = Canvas(tk, width=400,height=400)

>>> canvas.pack()

>>> canvas.create_polygon(10, 10, 100, 10, 100, 50, fill=" ", outline="black")

We can add an irregular polygon using the following code. Rige 9.11 shows
both the triangle and the oddly shaped polygon.

>>> canvas.create_polygon(200, 10, 240, 30, 120, 100, 140, 120, fill="", outline="black")

96

CHAPTER 9. A BIT GRAPHIC

Figure 9.11: A simple triangle.

9.7 Drawing Images

You can draw an image on a canvas using tkinter by rst loadinghe image, then
using the createimage function on the canvas object. This sounds a bit illoggal,
but it works as follows:

>>>
>>>
>>>
>>>
>>>
>>>

ouk~wnhE

from tkinter import *

tk = Tk()

canvas = Canvas(tk, width=400, height=400)
canvas.pack()

myimage = Photolmage(file="test.qgif")
canvas.create_image(0, 0, image=myimage, anchor=N W)

In lines 1 to 4 we set up the canvas the same as we have in pregi@xamples.
In line 5, the image is loaded into the variable myimage. It'$smportant that the
image you want to load is in a directory that's accessible toy®hon. This is usually
the directory that the Python console is running from. You ca nd out the name
of this directory by importing the os module and using the getvd() function:

9.7. DRAWING IMAGES 97

Figure 9.12: A photo image.

>>> import os
>>> print(os.getcwd())

This will probably print out something like “/Users/yourname" ::, so if your
name is Jane Matthews, getcwd() might return “/Users/janeratthews'.

Copy your image into that directory and then load it using thePhotolmage
function (same as line 5). You then use the creaienage function on the canvas to
display your image (line 6). If you've done all this correcyl, you'll see something
like gure 9.12

Photolmage can load image les with the extensions .gif, .pp and .pgm. If
you want to load other types of images (there are lots of di ent ways you can create
image les|for example, digital cameras usually store images with the extension
Jpg), then you'll need to use an extension which adds that gability to Python.
The Python Imaging Library (PIL) ! adds the ability to load all kinds of images, as
well as do things like expand and shrink, change image colsureverse images and
so on. However, installing and using the Python Imaging Lilary, is a bit beyond
the scope of this book.

1The Python Imaging Library can be found at http://www.pythonware.com/products/pil/index.htm

98 CHAPTER 9. A BIT GRAPHIC

Figure 9.13: The triangle moving across the screen.
9.8 Basic Animation

So far, we've seen how to do static drawing|that's pictures that don't move. What
about animation? Animation is not necessarily Tk's strongst, but you can do the
basics. For example, we can create a lled triangle and then ake it move across
the screen using the following code:

>>> import time
>>> from tkinter import *
>>> tk = Tk()
>>> canvas = Canvas(tk, width=400, height=400)
>>> canvas.pack()
>>> canvas.create_polygon(10, 10, 10, 60, 50, 35)
1
>>> for x in range(0, 60):
canvas.move(l, 5, 0)
tk.update()
time.sleep(0.05)

RROoOo~NoGO~WDNE

= O

The moment you press the Enter key after typing the last linethe triangle
will start moving across the screen (you can see it half-waym@ss in gure 9.13.

How does it work?

9.9. REACTING TO EVENTS::: 99

Lines 1 to 5 we've seen before|it's just the basic setup to diglay a canvas|
and in line 6, we create the triangle (using the creatpolygon function), and in line
7 you can see the identi er (the number 1) that is returned by his function. In line
8, we setup a simple for-loop to count from O to 59.

The block of lines (9 to 11) is the code to move the triangle. T&move function
on the canvas object will move any drawn object by adding vaés to the object's x
and y coordinates. For example, in line 9 we move the objecttwiid 1 (the identi er
for the triangle) 5 pixels across and O pixels down. If we waadl to move the back
again we might use canvas.move(1, -5, 0).

The function update on the tk object forces it to update (if wedidn't use
update, tkinter would wait until the loop had nished before moving the triangle,
which means you wouldn't see it move). Finally line 11 tells ®hon to sleep for
1/20th of a second (0.05), before continuing. We can chandag code, so the triangle
moves diagonally down the screen, by calling move(l, 5, 5)ir$t, close the canvas
(by clicking on the X button on the window), then try this code

>>> import time
>>> tk = Tk()
>>> canvas = Canvas(tk, width=400, height=400)
>>> canvas.pack()
>>> canvas.create_polygon(10, 10, 10, 60, 50, 35)
1
>>> for x in range(0, 60):
canvas.move(l, 5, 5)
tk.update()
time.sleep(0.05)

Figure 9.14 shows the triangle part way down the screen. Move the triang|
diagonally back up the screen to its starting position, by usg -5, -5:

>>> import time

>>> for x in range(0, 60):
canvas.move(l, -5, -5)
tk.update()
time.sleep(0.05)

9.9 Reacting to events

We can also make the triangle react when someone hits a key, bging what are
called event bindings Events are things that occur while a program is running,

100 CHAPTER 9. A BIT GRAPHIC

Figure 9.14: The triangle moving down the screen.

such as someone moving the mouse, hitting a key, or even algsa window. You

can setup Tk to look out for these events, and then do sometlgnn response. To
begin handling events we need to start by creating a functiorBuppose we want the
triangle to move when the enter key is pressed? We can de ne anttion to move

the triangle:

>>> def movetriangle(event):
canvas.move(l, 5, 0)

The function needs to have a single parameter (event), whigk used by Tk to
send information to the function about what has happened. Wehen tell Tk that
this function should be used for a particular event, using # bind.all function on
the canvas. The full code looks like this:

9.9. REACTING TO EVENTS::: 101

>>> from tkinter import *
>>> tk = Tk()
>>> canvas = Canvas(tk, width=400, height=400)
>>> canvas.pack()
>>> canvas.create_polygon(10, 10, 10, 60, 50, 35)
>>> def movetriangle(event):

canvas.move(l, 5, 0)

>>> canvas.bind_all('<KeyPress-Return>', movetriangle)

The rst parameter in the bind _all function describes the event which we want
Tk to look out for. In this case, it's the event <KeyPress-Ratn> (which is a press
of the enter key). We tell Tk that the movetriangle function $iould be called when
this key-press event occurs. If you run this code, click on ¢hTk canvas with your
mouse, and then try hitting the Enter (or Return) key on your keyboard.

How about changing the direction of the triangle dependingpon di erent key
presses, such as the arrow keys? First of all we change the mdwangle function
to the following:

>>> def movetriangle(event):
if event.keysym == 'Up"
canvas.move(l, 0, -3)
elif event.keysym == 'Down'":
canvas.move(l, 0, 3)
elif event.keysym == 'Left"
canvas.move(l, -3, 0)
else:
canvas.move(l, 3, 0)

The event object that is passed to movetriangle, contains aumber of proper-
ties?. One of these properties is keysym, which is a string holdirthe value of the
actual key pressed. If keysym contains the string "Up’, we it@anvas.move with the
parameters (1, 0, -3); if it contains down we call with the pameters (1, 0, 3), and
so on. Remember that the rst parameter is the identifying nmber for the shape
drawn on the canvas, the second parameter is the value to adal the x (horizontal)
coordinate, and the last parameter is the value to add to the gvertical) coordinate.
We then tell Tk that the movetriangle function should be usedio handle events
from 4 di erent keys (up, down, left and right). So, the code pw looks like this:

2Properties are named values, which describe something|for example, a property of the sky
is that it's blue (sometimes), a property of a car is that it has wheels. In programming terms, a
property has a name and a value.

102 CHAPTER 9. A BIT GRAPHIC

>>> from tkinter import *

>>> tk = Tk()

>>> canvas = Canvas(tk, width=400, height=400)
>>> canvas.pack()

>>> canvas.create_polygon(10, 10, 10, 60, 50, 35)

>>> def movetriangle(event):
if event.keysym == 'Up"
canvas.move(l, 0, -3)
elif event.keysym == 'Down'":
canvas.move(l, 0, 3)
elif event.keysym == 'Left"
canvas.move(l, -3, 0)
else:
canvas.move(l, 3, 0)

>>> canvas.bind_all('<KeyPress-Up>', movetriangle)
>>> canvas.bind_all('<KeyPress-Down>', movetriangle)
>>> canvas.bind_all('<KeyPress-Left>', movetriangle)
>>> canvas.bind_all('<KeyPress-Right>', movetriangle)

With this example, the triangle now moves in the direction othe arrow key that
you press.

Chapter 10

Where to go from here

Congratulations! You've made it to the end.

What you've hopefully learned from this book, are basic coepts that will
make learning other programming languages much simpler. \Néh Python is a bril-
liant programming language, one language is nalwaysthe best tool for every task.
So don't be afraid of looking at other ways to program your coputer, if it interests
you.

For example, if you're interested in games programming, yazan perhaps look
at something like BlitzBasic (vww.blitzbasic.com), which uses the Basic program-
ming language. Or perhaps Flash (which is used by many welestfor animation and
gamesi|for example, the Nickelodeon websiteyvww.nick.com uses a lot of Flash).

If you're interested in programming Flash games, possiblygood place to start
would be "Beginning Flash Games Programming for Dummies', ok written by
Andy Harris, or a more advanced reference such as "The Flasia@8me Developing
Handbook' by Serge Melnikov. Searching for ~ ash games' enwvw.amazon.conwill
nd a number of books on this subject.

Some other games programming books are: "Beginner's GuideltarkBASIC
Game Programming' by Jonathon S Harbour (also using the Basiprogramming
language), and "Game Programming for Teens' by Maneesh Sdiising BlitzBasic).
Be aware that BlitzBasic, DarkBasic and Flash (at least the eévelopment tools) all
cost money (unlike Python), so Mum or Dad will have to get invived before you
can even get started.

If you want to stick to Python for games programming, a couplef places to
look are: www.pygame.org and the book "Game Programming With Python' by
Sean Riley.

If you're not speci cally interested in games programmingput do want to

103

104 CHAPTER 10. WHERE TO GO FROM HERE

learn more about Python (more advanced programming topicsihen take a look
at ‘Dive into Python' by Mark Pilgrim (www.diveintopython.org). There's also a
free tutorial for Python available at: http://docs.python.org/tut/tut.ntml . There's
a whole pile of topics we haven't covered in this basic intradtion so, at least from
the Python perspective, there's still a lot for you to learn ad play with.

Good luck and enjoy your programming e orts.

Appendix A

Python Keywords

Keywords in Python (indeed, in most programming languagesre important words

that are used by the language itself. If you try to use these epial words as variables,
or use them in the wrong way, you will get strange (sometimesiriny, sometimes
confusing) error messages from the Python console. Each bétPython keywords,

and a basic description is given below.

and

The keyword and is used to join two expressions together in a statement (liken
if-statement), to say that both expressions must be true. Foexample:

if age > 10 and age < 20

This means that age must be greater than 10 and less than 20.

as

The keyword as is used to give another name to an imported module. For exangpl
if you had a module with a name like:

i_am_a_python_module_that is_not very useful

It would be enormously annoying to have to type that module mae every time you
want to use it:

105

106 APPENDIX A. PYTHON KEYWORDS

>>> import i_am_a_python_module_that_is_not_very usef ul
>>>

>>> |_am_a_python_module_that_is _not_very useful.do_ something()

| have done something

>>> |_am_a_python_module_that_is_not_very_useful.do_ something_else()
| have done something else!

Instead you can give it a new name when you import it, then justise that new
name (kind of like a nickname):

>>> import i_am_a_python_module_that_is_not_very _usef ul as notuseful
>>>

>>> notuseful.do_something()
| have done something

>>> notuseful.do_something_else()
| have done something else!

You probably won't use the keyword "as' that much, though.

assert

Assert is an advanced keyword that is used by programmers taysthat some code
must be true. It's another way of catching errors and problesiin code|and usually
used by more advanced programs.

break

The break keyword is used to stop some code from running. You might usébeeak
inside a for-loop such as:

>>> age = 25
>>> for x in range(1, 100):
print(‘counting %s' % X)
if X == age:
print('end counting")
break

If the variable "age' was set to 10, this would print out:

107

counting 1
counting 2
counting 3
counting 4
counting 5
counting 6
counting 7
counting 8
counting 9
counting 10
end counting

Take a look at Chapter5 to nd out more information about for-loops.

class

The class keyword is used to de ne a type of object. This is a feature pwided in
many programming languages, and is very useful when devalggp more complicated
programs, but is a little too advanced for this book.

del

Del is a special function used to get rid of something. For exmle, if you had a list
of things you wanted for your birthday in your diary, but then changed your mind
about one, you would cross it o the list, and add the new one:

If we had the same list in python:

>>> what_i_want = [remote controlled car', 'new bike', ‘co mputer game']

We could remove the computer game by using del, and add the né&e&m by using
the function append:

108 APPENDIX A. PYTHON KEYWORDS

>>> del what_i_want[2]
>>> what_i_want.append(‘roboreptile")

And then to see the new list:

>>> print(what_i_want)
[remote controlled car', 'new bike', 'roboreptile’]

See Chapter2 for more information about lists.

elif

The keyword elif is used as part of an if-statement. Seié below...

else

The keyword else is also used as part of an if-statement. Sek below...

except

Another keyword used for catching problems in code. Again ithis used in more
complicated programs, but too advanced for this book.

exec

exec is a special function used to look at a string as though it was@ece of Python
code. For example, you can create a variable with a string ved as follows:

>>> myvar = 'hello there'
Then print the contents:

>>> print(myvar)
hello there

But you could also put some Python code in that string instead

109
>>> myvar = 'print("hello there")'

And then you could use exec to turn that string into a mini Pytlon program and
run it:

>>> exec(myvar)
hello there

It's a bit of a weird idea, and something that might not make sese to you
until you needed it. Like assert it's one of those advanced y&ords that is used in
more sophisticated programs.

nally

This is another advanced keyword, used to make sure that if arror occurs, some
special code runs (usually to tidy up any 'mess' that a piece code has left behind).

for

The for keyword is used to create a for-loop of some kind. For example

for x in range(0,5):
print('x is %s' % Xx)

The above for-loop executes the block of code (the print s&ment) 5 times, creating
the output:

&

X X X X X
o0 n
AwNPr O

from

When importing a module, you can just import the part of it youneed, using the
from keyword. For example, the turtle module has a function Pen(which is used
to create a Pen object (basically a canvas on which the turtlenoves)|you can
import the entire turtle module and then use the Pen functionas follows:

110 APPENDIX A. PYTHON KEYWORDS

>>> import turtle
>>> t = turtle.Pen()

Or, you can just import the Pen function on its own, and then us it directly
(without needing to refer to the turtle module at all):

>>> from turtle import Pen
>>> t = Pen()

Of course, this does mean that you can't use the parts of the mole you
haven't imported. For example, the time module has a functiws called localtime
and gmtime. If we import localtime, then try to use gmtime, wél get an error:

>>> from time import localtime
>>> print(localtime())
(2007, 1, 30, 20, 53, 42, 1, 30, 0)

This works ne, but:

>>> print(gmtime())
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'gmtime' is not defined

By saying \'gmtime' is not de ned" Python is telling us that it doesn't know
about the function gmtime: : : yet. If there are a bunch of functions in a particular
module that you want to use, and you don't want to refer to thenby using the mod-
ule name (i.e. time.localtime, or time.something-else) yocan import everything in
the module using an asterisk (*):

>>> from time import *

>>> print(localtime())

(2007, 1, 30, 20, 57, 7, 1, 30, 0)
>>> print(gmtime())

(2007, 1, 30, 13, 57, 9, 1, 30, 0)

In this case, we import everything from the time module, andam refer to the
individual functions by name.

111
global

In Chapter 6, we talked aboutscope Scope is the “visibility' of a variable. If a
variable is de ned outside of a function, usually it can be & inside the function.
If de ned inside a function, usually it can't be seeroutside of that function.

The global keyword is one exception to this rule. A variablehiat is de ned as
global, can be seen everywhere. The de nition of the word ddal is world-wide or
universal, so if you think of your Python console as like a mirworld, then global
truly means world-wide. For example:

>>> def test():

global a
a=1
b =2

What do you think happens when you call print(a), and then pmt(b), after
running the function test? The rst will work, and then secord will cause an error
message to be displayed:

>>> test()

>>> print(a)

1

>>> print(b)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'b' is not defined

The variable a is now global (visible across the “world'), lub is still only
visible inside the function. Note that you must call global lefore saving a value
using in your global variable.

if

A statement making a decision about something|which is somgmes used with the
additional keywords else and elif (else if). An if-statemens a way of saying, \if
something is true, then perform an action of some kind". Forxample:

112 APPENDIX A. PYTHON KEYWORDS

if toy_price > 1000:

print(That toy is over-priced’)
elif toy_price > 100:

print(That toy is expensive")
else:

print('l would like that toy")

This if-statement says that if a toy price is over $1000, it i®ver-priced; if the
toy price is over $100, then it's expensive.... otherwise $ays (prints) \I would like
that toy". Chapter 4 has more information about if-statements.

import

The import keyword is to tell Python to load a module so it can be used. For
example:

>>> import sys

This code tells Python you want to use the module sys.

in

The in keyword is used in expressions, to nd if an item is within a dkection of
items. For example, can the number 1 be found in a list (a cotiBon) of numbers:

>>> jf 1 in [1,2,3,4]:
print('number is in list)
number is in list

Or can lettuce be found in a shopping list:

>>> shopping_list = ['eggs’, 'milk', 'cheese']
>>> if 'lettuce' in shopping_list:

print(lettuce is in the shopping list')
.. else:

print(lettuce is not in the shopping list’)

lettuce is not in the shopping list

113
1S

The keyword s, is sort of like the equals operator (==) which is used to tellif two
things are equal (for example 10 == 10 is true, 10 == 11 is falge However, there
is a fundamental di erence betweens and ==. If you are comparing two things,
== may return true, where is may not (even if you think the things are the same).

This is one of those extremely advanced programming concspthat tends to
be enormously confusing, so for the moment just stick with gy ==.
lambda

Another advanced keyword. In fact lambda is so complicatedgven to write an
explanation about it would cause this book to burst into ames.

So best not to talk about it.

not

If something is true, thenot keyword makes it false. For example, if we create a
variable x and set it to the value True...

>>> x = True

...and then print the value of x usingnot , we get:

>>> print(not Xx)
False

Which doesn't seem very useful, until you start usingiot in if-statements.
For example, if you are 12 years old, and the most important agfor you is 12, you
don't particular want to refer to all other years by saying:

\1 is not an important age" \2 is not an important age" \3 is not
an important age" \4 is not an important age" \50 is not an
important age”

And so on.
In terms of an if-statement, we could write that as::

114 APPENDIX A. PYTHON KEYWORDS

if age ==

print("1 is not an important age")
elif age == 2:

print("2 is not an important age")
elif age == 3:

print("3 is not an important age")
elif age == 4:

print("4 is not an important age")

. :continuing on forever. A simpler way to write the statement wuld be:

if age < 10 or age > 10:
print("%s is not an important age" % age)

But one of the most simple ways to write that if-statement is ¥ using not :

if not age == 10:
print("%s is not an important age" % age)

Which, you've probably already realised, is just another waof saying, \if age is not
10".

or

The or keyword is used to join two expressions together in a statemte(such as
an if-statement), to say that at least one of the expressionshould be true. For
example:

>>> f friend == 'Rachel' or friend == 'Rob"
print(‘The Robinsons’)

.. elif friend == 'Bill' or friend == 'Bob'":
print(The Baxters')

In this case, if the variable friend contains "Rachel' or "Rp then it prints
"The Robinsons'. If the variable friend contains "Bill' or Bob' then it prints "The
Baxters'.

pass

Sometimes when you're writing a program you only want to wré bits of it, to try
things out. The problem with this is that you can't have an ifstatement without

115

the block of code that should be run if the expression in the-ftatement is true.
You also can't have a for-loop without the block of code thatteould be run in the
loop. For example:

>>> if age > 10:
print('older than 10"

The above code will work, but if you type:

>>> if age > 10:

You'll get an error message in the console that looks somatligi like this:

File "<stdin>", line 2
AN

IndentationError: expected an indented block

This is the error message Python displays, when you shouldveaa block of
code after a statement of some kind.

The pass keyword can be used in these cases, so you can write a statetnen
but not provide the block of code that goes with it. For examm, you might want to
write a for-loop, with an if-statement inside it. Perhaps yo haven't decided what
to put in the if-statement yet. Maybe you'll put a print, mayb e you'll put a break,
maybe something else. In which case, you can ys&ss and the code will still work
(even if it doesn't do exactly what you want yet). The code:

>>> for x in range(1,7):
print('x is %s' % X)
if x ==
pass

will print out the following:

X X X X X X
7]
oM WNR

Later on you can add the code in the block for the if-statemenireplacing the pass
keyword).

116 APPENDIX A. PYTHON KEYWORDS

print

The print keyword, writes something to the Python console; such as arisig, a
number or a variable:

print(hello there")

print(10)

print(x)
raise
Another advanced keyword. In this casesaise is used to cause an error to happen|
which might seem like a strange thing to do but, in advanced pgrams, is actually
quite useful.

return

The return keyword is used to return a value from a function. For exampleyou
might create a function to return the amount of money you've aved:

>>> def mymoney():
return money_amount

When you call this function, the value returned can be assigud to another variable:

>>> money = mymoney()

or printed:

>>> print(mymoney())

try

The try keyword is the beginning of a block of code that ends with thexcept
and/or nally keywords. All together, thesetry/except/ nally blocks of code
are used to handle errors in a program|for example, to make s that the program
displays a useful message to the user, rather than an ugly Pgin error.

117

while

A bit like a for-loop, while is another way of looping code. Where a for-loop counts
through a range (of numbers), a while loop keeps running whilan expression is
True. You have to be rather careful with while loops, becausé the expression is
always True, the loop will never end (this is called an in nie loop). For example:

>>> x = 1
>>> while x ==
print('hello")

If you run the above code, it will loop forever. Well, at leasuntil you either
close the Python console, or hiCTRL+C (the control key and the C key together)
to interrupt it. However the following code:

>>> x = 1

>>> while x < 10:
print('hello")
X=x+1

Will print "hello’ 9 times (each time adding 1 to the variablex, until x is no
longer less than 10). This is obviously a bit like a for-loofyut does have its uses
in certain situations.

with

With is a very advanced keyword.

yield

Yield is another very advanced keyword.

118 APPENDIX A. PYTHON KEYWORDS

Appendix B

Built-in Functions

Python has a number of built-in functions|functions that ca n be used without
needing toimport them rst. Some of the available built-in functions are lised
below.

abs

The abs function returns the absolute value of a number. An absolutgalue is a
number that is not negative. So the absolute value of 10 is 1@nd the absolute
value of -20.5 is 20.5. For example:

>>> print(abs(10))
10

>>> print(abs(-20.5))
20.5

bool

The bool function returns either True or False based on the value pasg as its
parameter. For numbers, O returns False, while any other numer returns True:

119

120 APPENDIX B. BUILT-IN FUNCTIONS

>>> print(bool(0))

False

>>> print(bool(1))

True

>>> print(bool(1123.23))
True

>>> print(bool(-500))
True

For other values, None returns False while anything else rgns True:

>>> print(bool(None))
False

>>> print(bool('a’))
True

cmp

The cmp function compares two values and returns a negative numbdrthe rst
value is less than the second; returns O if the rst value is eql to the second; and
returns a positive number if the rst value is greater than tre second. For example,
1 is less than 2:

>>> print(cmp(1,2))
-1

And 2 is equal to 2:

>>> print(cmp(2,2))
0

But 2 is greater than 1:

>>> print(cmp(2,1))
1

Compare doesn't only work with numbers. You can use other vats, such as strings:

>>> print(cmp(‘a’,'b"))
-1
>>> print(cmp(‘a’,'a’))
0
>>> print(cmp('b','a’))
1

But do be careful with strings; the return value may not be exetly what you
expect ::

121

>>> print(cmp('a’,'A"))
1
>>> print(cmp('A','a’))
-1

A lower-case 'a’ is actually greater than an upper-case 'AOf course::

>>> print(cmp(‘aaa’,'aaaa’))
-1
>>> print(cmp(‘aaaa’,'aaa’))
1

:.:3 letter a's (aaa) are less than 4 letter a's (aaaa).

dir

The dir function returns a list of information about a value. You canuse dir on
strings, numbers, functions, modules, objects, classes|ptty much anything. On
some values, the information might not be all that useful (irfact it might not make

a huge amount of sense at all). For example, calling dir on theumber 1 results
in:::

>>> dir(1)

[Labs ' add_' ' and_ ' ' class_ ', ' cmp__ ', ' _coerce_', ' delattr_ '

' div_' ' divmod_', ' doc_' ' float ' ' flo ordiv__', ' getattribute_ ',

' _getnewargs_ ', ' hash_ ', ' hex_ ', ' index_"', " _init_', " _int_ ', ' invert_ ',

" long_ ', ' Ishift_ ', ' _mod__', ' mul_' ' neg_ _,'_new__', ' nonzero_ '
'oct ',' or_',' pos_ ' pow_ ' ' radd_ ', ' _rand__', ' rdiv_’,

' _rdivmod__', ' reduce_ ', ' reduce ex_ ', ' repr_ ' rfloordiv__",

" rlshift_',' _rmod__ ', " _rmul_', ' ror_ ', ' rp ow_ ', ' rrshift ', ' rshift_ '

' rsub_ ', ' rtruediv_',' rxor_ ', ' setattr ', ' str_ ' sub_ ' truediv_ ',
" xor__"

.. :quite a large number of special functions. Whereas callingran the string
‘a’ results in...

122 APPENDIX B. BUILT-IN FUNCTIONS

>>> dir(‘a’)

[add_' ' class_ ' ' contains_ ' ' delattr ' ,'_doc_' ' _eq_' ' _ge_ ',

' _getattribute__ ', ' getitem__', ' _getnewargs__', ' __getslice_ ', " _gt_', ' hash_
init_ ' e ' den_ ', It ' _mod_ ', _mul_""'" ne_ ' new_ |

' reduce_',' reduce ex_ ',' repr_',' rmod_ ', ' rmul_', ' setattr ',

' str_ ' 'capitalize', ‘center', 'count’, 'decode’, 'e ncode', 'endswith’, 'expandtabs’,
'find', 'index’, ‘isalnum’, ‘isalpha’, ‘'isdigit’, 'islow er', 'isspace’, 'istitle’,

'isupper’, ‘join', 'ljust’, 'lower’, 'Istrip’, 'partitio n', 'replace’, 'rfind’, 'rindex’,
rjust', ‘rpartition’, 'rsplit', 'rstrip’, 'split’, 'spl itlines', 'startswith', 'strip’,

'swapcase', 'title', 'translate’, 'upper', 'Zfill']

Which shows you there are functions such as capitalize (chgathe rst letter
in a string to a capital): ::

>>> print(‘aaaaa’.capitalize())
Aaaaa

:zisalnum (which returns True if a string is alphanumeric|contains only let-
ters and numbers), isalpha (which returns True if a string aatains only letters),
and so on. Dir can be useful when you have a variable and quigkbant to nd out
what you can do with it.

eval

The eval function takes a string as a parameter and runs it as though ivere a
Python expression. This is similar to theexec keyword, but works a little di erently.
With exec you can create mini Python programs in your stringbut eval only allows
simple expressions, such as:

>>> eval('10*5")
50

le
A function to open a le and return a le object with functions that can access

information in the le (the contents of the le, its size and 0 on). You can nd
more information about le and le objects in Chapter 7.

oat

The oat function converts a string or a number into a oating point number. A
oating point number is a number with a decimal place (also déed a real number).

123

For example, the number 10 is an ‘integer' (also called a wieohumber), but 10.0,
10.1, 10.253, and so on, are all * oats'. You can convert a Big to a oat by calling:

>>> float('12")
12.0

You can use a decimal place in the string as well:

>>> float('123.456789')
123.456789

A number can be converted to a oat by calling:

>>> float(200)
200.0

Of course, converting a oating point number just returns amther oating point
number:

>>> float(100.123)
100.123

Calling oat with no arguments, returns 0.0.

int

The int function converts a string or a number into a whole number (omteger).
For example:

>>> int(123.456)
123

>>> int('123")
123

This function works a little di erently from the oat function. If you try to
convert a oating point number in a string, you will get an error message:

>>> int('123.456")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: '123.45 6'

However, if you call int with no argument, then 0 is returned.

124 APPENDIX B. BUILT-IN FUNCTIONS

len

The len function returns the length of an object. In this case of a sing, it returns
the number of characters in the string:

>>> len('this is a test string’)
21

For a list or a tuple, it returns the number of items:

>>> mylist = ['a, 'b', 'c’, 'd']
>>> print(len(mylist))

4

>>> mytuple = (1,2,3,4,5,6)
>>> print(len(mytuple))

6

For a map, it also returns the number of items:

>>> mymap = { '‘a' : 100, 'b' : 200, 'c' : 300 }
>>> print(len(mymap))
3

You might nd the len function useful with loops, if you want to count through the
elements in a list. You could do this using the following code

>>> mylist = ['a', 'b', 'c', 'd']
>>> for item in mylist:
print(item)

Which would print out all the items in the list (a,b,c,d)|but what if you wanted
to print the index position of each item in the list? In this case we could nd the
length of the list, then count through the items as follows:

>>> mylist = ['a', 'b', 'c', 'd']
>>> length = len(mylist)
>>> for x in range(0, length):
print('the item at index %s is %s' % (x, mylist[x]))

the item at index 0 is a
the item at index 1 is b
the item at index 2 is ¢
the item at index 3 is d

We store the length of the list in the variable “length’, and hen use that variable in
the range function to create our loop.

125

max

The max function returns the largest item in a list, tuple or even a ging. For
example:

>>> mylist = [5, 4, 10, 30, 22]
>>> print(max(mylist))
30

A string with the items are separated by commas or spaces wallso work:

>>> s = 'a,b,d,h,g'
>>> print(max(s))
h

And you don't have to use lists, or tuples or strings. You canlso call the max
function directly with a number of arguments:

>>> print(max(10, 300, 450, 50, 90))
450

min

The min function works in the same way as max, except it returns the satest
item in the list/tuple/string:

>>> mylist = [5, 4, 10, 30, 22]
>>> print(min(mylist))
4

range

The range function is mainly used in for-loops, when you want to loop ttough
some code a number of times. We rst saw range in Chapté&; so we've seen how
to use it with two arguments, but it can also be used with threarguments. Here's
another example of range with two arguments:

126 APPENDIX B. BUILT-IN FUNCTIONS

>>> for x in range(0, 5):
print(x)

BWN P O:

What you might not have realised, is that the range function etually just returns a
special object (called an iterator) which the for-loop therworks through. You can
convert the iterator into a list (oddly enough, using the fumtion list), so if you print
the return value when calling range, you'll see the numbers ¢ontains:

>>> print(list(range(0, 5)))
[0, 1, 2, 3, 4]

You get a list of numbers that can be assigned to variables anged elsewhere in
your program:

>>> my_list_of numbers = list(range(0, 30))

>>> print(my_list_of_numbers)

[0, 1, 2, 3,4,5, 6,7, 8,9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]

Range also takes a third argument, called a “step' (the rstwo arguments are called
the “start' and the “stop'). If the step value is not passed to the function (in other
words, when you call it with only the start and stop values), default the number
1 is used. But what happens when we pass the number 2 as the $teéyou can see
the result in the following example:

>>> my_list_of numbers = list(range(0, 30, 2))
>>> print(my_list_of _numbers)
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28]

Each number in the list increases by 2 from the previous numheWe can use larger
steps:

>>> mylist = list(range(0, 500, 50))
>>> print(mylist)
[0, 50, 100, 150, 200, 250, 300, 350, 400, 450]

This creates a list from 0 to 500 (but not including 500, of case), incrementing
the numbers by 50.

127

sum

The sum function adds up items in a list and returns the total number.For example:

>>> mylist = list(range(0, 500, 50))
>>> print(mylist)
[0, 50, 100, 150, 200, 250, 300, 350, 400, 450]

>>> print(sum(mylist))
2250

128 APPENDIX B. BUILT-IN FUNCTIONS

Appendix C

A Few Python Modules

Python has a large number of modules available for doing albds of things. If you
want to read about them, you can look at the Python documentadn at the fol-
lowing address:docs.python.org/modindex.html however, a few of the more useful
modules are explained below. A warning if you do decide to lba@t the Python
documentation|the list of modules is very long, and some of hem are quite com-
plicated.

The ‘random' module

If you've ever played the game where you ask someone to guessimber between
1 and 100, you'll know what to do with the random module. Randm contains a
number of functions useful for coming up with: : random numbers. It's kind of like
asking the computer to pick a number. The random module coritess a number of
functions, but the most useful are randint, choice and shue The rst function,
random, picks a random number between a start and end numben (other words,
between 1 and 100, or between 100 and 1000, or between 1000%0@D, and so on).
For example:

>>> import random

>>> print(random.randint(1, 100))

58

>>> print(random.randint(100, 1000))
861

>>> print(random.randint(1000, 5000))
3795

We could use this to create a simple (and annoying) guessingnge, using a
while loop:

129

130

APPENDIX C. A FEW PYTHON MODULES

import random

import sys

num = random.randint(1, 100)
while True:

print('Guess a number between 1 and 100"
chk = sys.stdin.readline()

i = int(chk)

if i == num:
print("'You guessed right’)
break

elif i < num:

print('Try higher")
elif i > num:
print(Try lower")

Use choice, if you have a list and want to pick a random item fro that list.

For example:
>>> import random
>>> |istl = ['a, 'b, 'c’, 'd, ‘e, 'f, 'dg, 'h"]
>>> print(random.choice(list1))
c
>>> list2 = ['ice cream', 'pancakes', 'trifle’', '‘pavlova’, 'sponge’ |
>>> print(random.choice(list2))
trifle

And nally, use shu e if you want to mix up a list (like shuing cards):

>>>
>>>
>>>
>>>
>>>
m,

import random

list1 = ['a, 'b', 'c, 'd, ‘e, 'f, 'dg, 'h']

list2 = ['ice cream', 'pancakes’, 'trifle’, 'paviova’, 'sponge’ |
random.shuffle(list1)

print(list1)

Ie'! 'a'll ‘bll ICII Ig'l 'fll Id']

>>> random.shuffle(list2)
>>> print(list2)
[pancakes', 'ice cream', 'sponge’, 'trifle’, ‘paviova’l

The

“sys' module

The sys module contains useful "system' functions. This isgt an odd way of saying
that they are very important within Python. Some of the most wseful functions and
values available in sys are: exit, stdin, stdout, and versio

if you

The exit function is another way of stopping the Python conde. For example

type:

131

>>> import sys
>>> sys.exit()

The Python console will stop. Depending upon whether you'ngsing Windows,
Mac or Linux, a number of di erent things might happen|but th e end result is that
the Python console stops running.

Stdin has been used elsewhere in this book (see Chapigrto prompt someone
using a program to enter some values. For example:

>>> import sys

>>> myvar = sys.stdin.readline()
this is a test value

>>> print(myvar)

this is a test value

Stdout is the opposite|used to write messages to the consolen some ways,
it's the same as print, but works more like a le, so sometime#'s more useful to
use stdout than print:

>>> import sys
>>> | = sys.stdout.write('this is a test’)
this is a test>>>

Notice where the prompt &>>) reappears? It's not an error, that it's at the
end of the message. That's because, unlike print, when youllcarite, it doesn't
automatically move to the next line. To do the same with writewe can do the
following:

>>> import sys

>>> | = gys.stdout.write('this is a test\n’)
this is a test
>>>

(Note that stdout.write returns the number of characters witten{try print(l) to see
the result).

nn is the escapecharacter for a newline (what you get when you hit the enter k8.

An escape character is a special character that you use inisggs when you can't
type it directly. For example, if you want to create a string wth a newline in the
middle, but try to use the enter key, you'll get an error:

132 APPENDIX C. A FEW PYTHON MODULES

>>> g5 = 'test test
File "<stdin>", line 1

s = 'test test
N

SyntaxError: EOL while scanning single-quoted string

Instead you can use the newline escape character:

>>> s = 'test test\ntest'
Finally, version is just a way of displaying the version of Pynon you are running:

>>> import sys

>>> print(sys.version)

2.5.1c1 (release25-maint, Apr 12 2007, 21:00:25)
[GCC 4.1.2 (Ubuntu 4.1.2-Oubuntu4)]

The “time' module

Python's time module contains functions for displaying: : well, the time, obviously.
However, if you try to call the most obvious function (time),the result won't quite
be what you were expecting:

>>> import time
>>> print(time.time())
1179918604.34

The number returned by time() is actually the number of secats since the 1st
of January, 1970 (at 00:00:00am to be exact). You might not thk this is enormously
useful, however it does, occasionally, have its purpose.rfexample, if you create a
program and want to know how fast bits of it run, you can recordhe time at the
beginning, the time at the end, and then compare the values. oF example, how
long would it take to print all the numbers from 0 to 100,000? W can easily create
a function to print them out:

>>> def lots_of _numbers(max):
for x in range(0, max):
print(x)

Then call the function:

133

>>> |ots_of_numbers(100000)

But if we want to know how long it took, we can modify the functon and use the
time module:

>>> def lots_of number(max):
tl = time.time()
for x in range(0, max):

print(x)
t2 = time.time()
print(it took %s seconds' % (t2-t1))

If we call it again:

>>> |ots_of_numbers(100000)
0

1
2
3

99997
99998
99999
it took 6.92557406425 seconds

How does it work? The rst time we call the time() function, we assign the value
to the variable t1. We then loop and print out all the numbers. Again we call the
time() function and this time assign the value to the variab$ t2. Since it took a
few seconds for the loop to complete, the value in t2 will be dher (or later to be
exact) than t1 (the number of seconds since 1st of Jan, 1970lIviave increased).
So if you subtract t2 from t1, you have the number of seconds fbok to print all
those numbers.

Other functions available on the time module include: asatie, ctime, local-
time, sleep, strftime, and strptime.

The function asctime takes a date as a tuple (remember: a tuplis a list of
values that cannot be changed) and converts it into a readablform. You can also
call it without any argument and it will display the current date and time in a
readable form:

134 APPENDIX C. A FEW PYTHON MODULES

>>> import time
>>> print(time.asctime())
Sun May 27 20:11:12 2007

To call it with an argument, we rst need to make a tuple with the correct values
for date and time. Let's assign the tuple to the variable t:

>>> t = (2007, 5, 27, 10, 30, 48, 6, 0, 0)

The values in the sequence are year, month, day, hours, miest seconds, day of the
week (0 is Monday, 1 is Tuesday, and so on, up till Sunday whidk 6) and nally
the day of the year and whether or not it is daylight savings (Os isn't, 1 it is).
Calling asctime with the above tuple, we get:

>>> import time

>>> t = (2007, 5, 27, 10, 30, 48, 6, 0, 0)
>>> print(time.asctime(t))

Sun May 27 10:30:48 2007

But be careful with the values you put in a tuple. You can end upvith a nonsensical
date if you put in the wrong values:

>>> import time

>>> t = (2007, 5, 27, 10, 30, 48, 0, 0, 0)
>>> print(time.asctime(t))

Mon May 27 10:30:48 2007

Because the value for "day of the week' was set to O (rather th®), asctime now
thinks that May the 27th is a Monday, rather than what it actually is|a Sunday.

The function ctime is used to convert a number of seconds in@ readable
form. For example, we can use the time() function explainechithe beginning of
this section:

>>> import time

>>> t = time.time()

>>> print(t)

1180264952.57

>>> print(time.ctime(t))

Sun May 27 23:22:32 2007

The function localtime returns the current date and time as auple in the same
sequence of values we've just used:

135

>>> import time
>>> print(time.localtime())
(2007, 5, 27, 23, 25, 47, 6, 147, 0)

This value we can also pass into asctime:

>>> import time

>>> t = time.localtime()
>>> print(time.asctime(t))
Sun May 27 23:27:22 2007

The function sleep is quite useful when you want to delay yoyrogram for a certain
period of time. For example, if you wanted to print out one nurber every second,
the following loop wouldn't be very successful:

>>> for x in range(l, 61):
print(x)

BWN R

It would instantly print out all the numbers from 1 to 60. However if you tell
Python to go to sleep for a second between each print statenmen

>>> for x in range(1, 61):
print(x)
time.sleep(1)

There will be a short (1 second) delay between the display oieh number. Telling a
computer to sleep might not seem all that useful, but there artimes when it can be.
Think about your alarm clock that wakes you up in the morning.When you hit the

sleep button, it stops buzzing for a few minutes, giving youraextra few moments
of sleep (at least until someone calls you for breakfast). €hsleep function is just
as useful in certain situations.

The function strftime is used to change the way a date and timealue is
displayed, and strptime is used to take a string and convert iinto a date/time
tuple. Let's look at strftime rst. Just before we saw how to ©iange a tuple into a
string using asctime:

136 APPENDIX C. A FEW PYTHON MODULES

>>> t = (2007, 5, 27, 10, 30, 48, 6, 0, 0)
>>> print(time.asctime(t))
Sun May 27 10:30:48 2007

That works ne for most situations, but what if you don't like the way that string
is displayed|what if you only want to display the date and not the time? We can
do that with strftime:

>>> print(time.strftime('%d %b %Y', t))
27 May 2007

As you can see, stritime takes 2 arguments: the rst is a datéme format
(which describes how the date/time should be displayed), @nthe second is the
tuple containing the time values. The format, %d %b %Y is andter way of saying:
‘show the day, the month and then the year'. We could also diigy the month as a
number, for example:

>>> print(time.strftime('%d/%m/%Y", t))
27/05/2007

This format is a way of saying, “display the day, then a forwakslash, then
display the month as a number, then a forward-slash, then gilay the year'. There
are a number of di erent values you can use in a format:

137

%a | a shortened version of a week day (for example, Mon, Tues, Wed
Thurs, Fri, Sat, and Sun)

%A | the full weekday name (Monday, Tuesday, Wednesday, Thursyga|
Friday, Saturday, Sunday)

%b | a shortened version of a month name (Jan, Feb, Mar, Apr, May,
Jun, Jul, Aug, Sep, Oct , Nov, Dec)

%B | the full version of a month name (January, February, March, Aril,
May, and so on)

%c | the full date and time, in the same format the asctime uses

%d | the day of the month as a number (from 01 to 31)

%H | the hour of the day, in 24 hour format (from 00 to 23)

%l | the hour of the day, in 12 hour format (from 01 to 12)

%) | the day of the year as a number (from 001 to 366)

%m | the month as a number (from 01 to 12)

%M | the minute as a number (from 00 to 59)

%p | morning or afternoon as either AM or PM

%S | the seconds as a number

%U | the week number of the year as a number (from 00 to 53)

%w | the day of the week as a number. Sunday is 0, Monday is 1, up to
Saturday, which is 6

%x | a simple date format (usually month/day/year|for example,
03/25/07)

%X | a simple time format (usually hour:minutes:seconds|for example
10:30:53)

%y | the year in 2 digits (for example, 2007 would be 07)

%Y | the year in 4 digits (e.g. 2007)

The function strptime is almost the reverse of strftimelit t akes a string and
converts it into a tuple containing the date and time valueslt also takes the same
values in the format string. An example of using this functio is:

>>> import time

>>> t = time.strptime('05 Jun 2007', '%d %b %Y")
>>> print(t)

(2007, 6, 5, 0, 0, O, 1, 156, -1)

If the date in our string is day/month/year (for example, 01/02/2007), we might

use.

138 APPENDIX C. A FEW PYTHON MODULES

>>> import time

>>> t = time.strptime('01/02/2007", '%d/%m/%Y")
>>> print(t)

(2007, 2, 1, 0, O, O, 3, 32, -1)

Or if the date is month/day/year, we might use:

>>> import time

>>> t = time.strptime('03/05/2007', '%m/%d/%Y")
>>> print(t)

(2007, 3, 5, 0, 0, O, O, 64, -1)

We can combine the 2 functions to convert a string in one fornh@o another. Let's
do it in a function:

>>> import time

>>> def convert_date(datestring, formatl, format2):
t = time.strptime(datestring, formatl)
return time.strftime(format2, t)

We can use this function by passing in the date string, the farat of that string,
and then the format that we want the returned date in:

>>> print(convert_date('03/05/2007', '%m/%d/%Y', '%d %B %Y"))
05 March 2007

Appendix D

Answers to \Things to try"

Here is where you can nd the answers to the questions askedaach chapter in the
section \Things to try".

Chapter 2

1. The answer toExercise 1 might be something like the following:

>>> toys = ['car', 'Nintendo Wii', 'computer’, 'bike']

>>> foods = ['pancakes’, 'chocolate’, 'ice cream']

>>> favourites = toys + foods

>>> print(favourites)

['car', 'Nintendo Wii', 'computer’, 'bike', '‘pancakes', ' chocolate', 'ice cream’]

2. The answer toExercise 2 is simply adding the result of multiplying 3 by 25 and
the result of multiplying 10 by 32. The following equations lsows the result of this
equation:

>>> print(3 * 25 + 10 * 32)
395

However, given that we looked at the use of brackets in Chapt2, you might have
decided that you needed to put brackets around some parts dii¢ equation. You
might've done something like this:

>>> print((3 * 25) + (10 * 32))
395

The answer is the same, because multiplication is done befaaddition. In either
equation, the two multiplication operations are performedrst, and the results are

139

140 APPENDIX D. ANSWERS TO \THINGS TO TRY"

added. However, the second equation is possibly slightly thex than the rst|
because it's immediately obvious to the reader which opelahs are performed rst.
A less knowledgeable programmer (who doesn't know as muchoaib the order of
operations) might think that, in the rst equation, you mult iply 3 by 25, then add
10, then multiply the result by 32 (the answer to that is 2720| completely wrong).
With the brackets, it's a bit more obvious what gets calculatd rst.

3. The answer toExercise 3 will be something like the following:

>>> first_name = 'Mary'

>>> second_name = 'Wilson'

>>> print(‘'My name is %s %s' % (first_name, second_name))
My name is Mary Wilson

Chapter 3

1. A rectangle is like a square, except two of its sides are fgar than the other two.
By telling the turtle to do the following operations, you caneasily draw a rectangle:

move forward a certain number of pixels

turn left

move forward a shorter number of pixels

turn left

move forward, the number of pixels in the rst movement
turn left

move forward the shorter number of pixels in the second movemt

For example, the following code will drawing the rectangleni gureD.1.

>>> import turtle
>>> t = turtle.Pen()
>>> t.forward(150)
>>> t.left(90)

>>> t.forward(50)
>>> t.left(90)

>>> t.forward(150)
>>> t.left(90)

>>> t.forward(50)

141

Figure D.1: Turtle drawing a rectangle.

2. A triangle is a bit more complicated to draw, because you ead to know more
about angles and line lengths. If you haven't studied angles school then this may
be a bit harder to do than you expect. You can draw a basic triagie (see gureD.2)
using the following code:

>>> import turtle
>>> t = turtle.Pen()
>>> t.forward(100)
>>> t.left(135)

>>> t.forward(70)
>>> t.1eft(90)

>>> t.forward(70)

\Y

Chapter 5

1. The loop stops after the rst print. So when you run the coden the Python
console you get:

142 APPENDIX D. ANSWERS TO \THINGS TO TRY"

Figure D.2: Turtle drawing a triangle.

>>> for x in range(0, 20):
printChello %s' % x)
if x < 9:

break

hello 0

The reason it stops after the rst print is that during the rst run of the loop, the
value of the variable x is zero. Since zero is less than ninaetbreak statement stops
the loop from running any further.

2. To gure out how much money you get when you are paid 3% intest, you need
to multiply the number by 0.03. To begin with we should createa variable and
point it at the amount of our savings:

>>> amount = 100

To the amount of interest paid for 1 year would be that amount naltiplied by
0.03:

143

>>> amount = 100
>>> print(amount * 0.03)
3.0

That's $3! Not bad since we didn't need to do anything to get it We need to
print out this value and then add it to the total, and do it 10 times to work out the
interest that we are paid for 10 years:

>>> amount = 100

>>> for year in range(1, 11):
interest = amount * 0.03
print(interest earned for year %s is %s' % (year, intere st))
amount = amount + interest

is 3.0

is 3.09

is 3.1827

is 3.278181

is 3.37652643

is 3.4778222229
is 3.58215688959
is 3.68962159627
3.80031024416
0 is 3.91431955149

interest earned for year
interest earned for year
interest earned for year
interest earned for year
interest earned for year
interest earned for year
interest earned for year
interest earned for year
interest earned for year
interest earned for year

POO~NOONWNER
7 n

In the rst line we create a for-loop using the variable year ad the function
range to count from 1 to 10. The second line calculates the erest, multiplying the
value in variable amount by 0.03. The next line is the print sitement|which uses
place holders (%s) to include the values for year and intetesFinally in the last
line, we add the interest back into the amount. All the decimbplaces|the numbers
after the period (.) in the print lines|are a bit confusing, b ut you can tell that the
amount of interest each year increases a little bit as you adtle interest. The code
might be a bit more helpful if we also add the total saved eachewr:

144

>>> amount = 100

APPENDIX D. ANSWERS TO \THINGS TO TRY"

>>> for year in range(1, 11):
interest = amount * 0.03

interest
interest
interest
interest
interest
interest
interest
interest
interest
interest

print(interest earned for savings %s for year %s is %s' %

(amount, year, interest))
amount = amount + interest

earned
earned
earned
earned
earned
earned
earned
earned
earned
earned

Chapter 6

for
for
for
for
for
for
for
for
for
for

savings
savings
savings
savings
savings
savings
savings
savings
savings
savings

100 for year 1 is 3.0

103.0 for year 2 is 3.09

106.09 for year 3 is 3.1827
109.2727 for year 4 is 3.278181
112.550881 for year 5 is 3.37652
115.92740743 for year 6 is 3.477
119.405229653 for year 7 is 3.58
122.987386542 for year 8 is 3.68
126.677008139 for year 9 is 3.80
130.477318383 for year 10 is 3.9

643
8222229
215688959
962159627
031024416
1431955149

1. Turning the for-loop into a function is actually quite eag. The function will look

something like this:

>>> def calculate_interest(amount, rate):
for year in range(1, 11):
interest = amount * rate
print(interest earned for savings %s for year %s is %s' %
(amount, year, interest))
amount = amount + interest

If you compare the function with the code above, you might nate that, apart
from the rst line, there's only one change to the original cde (0.03 is now the
parameter rate). Because amount was already a variable, tieéés no change required
when it becomes a parameter. You'll nd the output is also thesame when you run
the function:

145

>>> calculate_interest(100, 0.03)

interest earned for savings 100 for year 1 is 3.0

interest earned for savings 103.0 for year 2 is 3.09

interest earned for savings 106.09 for year 3 is 3.1827

interest earned for savings 109.2727 for year 4 is 3.278181

interest earned for savings 112.550881 for year 5 is 3.37652 643
interest earned for savings 115.92740743 for year 6 is 3.477 8222229
interest earned for savings 119.405229653 for year 7 is 3.58 215688959
interest earned for savings 122.987386542 for year 8 is 3.68 962159627
interest earned for savings 126.677008139 for year 9 is 3.80 031024416
interest earned for savings 130.477318383 for year 10 is 3.9 1431955149

2. Changing the function to pass in the year as a parameter algwolves only minor
changes:

>>> def calculate_interest(amount, rate, years):
for year in range(l, years):
interest = amount * rate
print(interest earned for savings %s for year %s is %s' %
(amount, year, interest))
amount = amount + interest

We can now easily change the starting amount, the rate of intest and the number
of years:

>>> calculate_interest(1000, 0.05, 6)

interest earned for savings 1000 for year 1 is 50.0

interest earned for savings 1050.0 for year 2 is 52.5

interest earned for savings 1102.5 for year 3 is 55.125

interest earned for savings 1157.625 for year 4 is 57.88125

interest earned for savings 1215.50625 for year 5 is 60.7753 125

3. The mini-program is a bit more complicated than the funcbns we've already
created. First we need to import the sys module so we can ask foput. Then we
need to prompt the user of our program for each of the values. pArt from that,
the function stays roughly the same:

146 APPENDIX D. ANSWERS TO \THINGS TO TRY"

>>> import sys
>>> def calculate_interest():
print(Enter the amount you have to save’)
amount = float(sys.stdin.readline())
print(Enter the interest rate’)
rate = float(sys.stdin.readline())
print(Enter the number of years’)
years = int(sys.stdin.readline())
for year in range(1, years):
interest = amount * rate
print(interest earned for savings %s for year %s is %s' %
(amount, year, interest))
amount = amount + interest

When we run the function, we'll see something like the follawg:

>>> calculate_interest()

Enter the amount you have to save

500

Enter the interest rate

0.06

Enter the number of years

12

interest earned for savings 500.0 for year 1 is 30.0

interest earned for savings 530.0 for year 2 is 31.8

interest earned for savings 561.8 for year 3 is 33.708

interest earned for savings 595.508 for year 4 is 35.73048

interest earned for savings 631.23848 for year 5 is 37.87430 88

interest earned for savings 669.1127888 for year 6 is 40.146 767328
interest earned for savings 709.259556128 for year 7 is 42.5 555733677
interest earned for savings 751.815129496 for year 8 is 45.1 089077697
interest earned for savings 796.924037265 for year 9 is 47.8 154422359

interest earned for savings 844.739479501 for year 10 is 50. 6843687701
interest earned for savings 895.423848271 for year 11 is 53. 7254308963
Chapter 8

1. There's a hard way to draw an octagon, and an easy way. Therdaway, isn't
hard because it's complicated. It's hard because it requsemore typing:

147

import turtle

t = turtle.Pen()
>>> t.forward(50)
>>> t.right(45)
>>> t.forward(50)
>>> t.right(45)
>>> t.forward(50)
>>> t.right(45)
>>> t.forward(50)
>>> t.right(45)
>>> t.forward(50)
>>> t.right(45)
>>> t.forward(50)
>>> t.right(45)
>>> t.forward(50)
>>> t.right(45)
>>> t.forward(50)

You can see from that code that we tell the turtle to move forwal 50 pixels, then
turn right 45 degrees. We do this 8 times. Which is a lot of timeThe easier way to
draw an octagon is the following code (which produces the agfon in gure D.3):

>>> for x in range(0,8):
t.forward(50)
t.right(45)

2. If you take another look at the other functions in Chapter8, you'll already see
how to create a lled shape. We can convert the octagon codetana function that
takes a colour, but we'll also want to reuse the hexcolour fation

>>> def octagon(red, green, blue):
t.color(red, green, blue)
t.begin_fill()
for x in range(0,8):
t.forward(50)
t.right(45)
t.end_fill()

We set the colour, then turn lling on. Then we run the for loopto draw the
octagon, nally we switch lling back o again to Il in the sh ape. How about a
blue octagon (see gureD.4):

>>> octagon(0, 0, 1)

148 APPENDIX D. ANSWERS TO \THINGS TO TRY"

Figure D.3: Turtle drawing an octagon.

Figure D.4: Turtle drawing a blue octagon.

Index

addition, 11 if-statement, 33

if-then-else-statement,34
blocks of code44

keywords
conditions, 33 and, 105
combining, 36 as, 105
assert,106
date/time formats, 136 break, 106
degrees28 class,107
division, 11 del, 107
_ elif, 108
equality, 38 else, 108
escape characters] 31 except, 108
_ . exec,108
oating point, 10 nally, 109
for-loop, 41 for 1’09
functltt))ns,f; from, 109
abs, 1 global, 111
bool, 119 if 111
cmp, 120 import, 112
dir, 121 in. 112
eval, 122 i 113
le, 57, 63 122 lambda, 113
close,63 not 11é
read, 63 or ’114
Write, 63 pa’ss 114
oat, 122 print, 116
int, 123 raise, 116
len, 124 return, 116
max, 125 try, 116
min, 125 while, 117
range,42, 125 with, 117
sum, 127 yield, 117
hexadecimal colors90 lists, 19

149

150

appending,21
joining, 21
removing, 21
replacing, 20

modules,59, 129
0s, 96
random, 87, 129
choice, 130
randint, 129
randrange,87
shue, 130
sys, 59, 130
exit, 130
stdin, 60, 131
stdout, 131
version, 132
time, 59, 132
asctimes,133
ctime, 134
localtime, 59, 134
sleep,135
strftime, 135
strptime, 137
time (function), 132
tkinter, 83
basic animation,98
bind_all, 100
Canvas, 85
createarc, 91
createimage, 96
createline, 85
createoval, 92
create polygon, 95
createrectange,87
events, 99
move, 99
modulo operator,68
multi-line string, 17
multiplication, 9, 11

named parameters34

None, 36

operators,11
order of operations,11

Pen, 26

pixels, 27
Python, 3

Python console,4

return, 55

scope,s55
strings, 16
subtraction, 11

tuples, 22
turtle, 25
advanced,65
backward, 29
clear, 29
color, 69
black, 72

down (start drawing), 29

I, 72

forward, 26

reset, 29

turning left, 27
turning right, 27

up (stop drawing), 29

variable, 13
Variables, 15

while-loop, 50
white space,44

INDEX

	Preface
	Not all snakes will squish you
	A Few Words About Language
	The Order of Non-venomousConstricting Serpentes…
	Your first Python program
	Your Second Python program…the same again?

	8 multiplied by 3.57 equals…
	Use of brackets and ``Order of Operations''
	There's nothing so fickle as a variable
	Using Variable
	A Piece of String?
	Tricks with Strings
	Not quite a shopping list
	Tuples and Lists
	Things to try

	Turtles, and other slow moving creatures
	Things to try

	How to ask a question
	Do this… or ELSE!!!
	Do this… or do this… or do this… or ELSE!!!
	Combining conditions
	Emptiness
	What's the difference…?

	Again and again
	When is a block not square?
	While we're talking about looping…
	Things to try

	Sort of like recycling…
	Bits and Pieces
	Modules
	Things to try

	A short chapter about Files
	Turtles galore
	Colouring in
	Darkness
	Filling things
	Things to try

	A bit graphic
	Quick Draw
	Simple Drawing
	Drawing Boxes
	Drawing Arcs
	Drawing Ovals
	Drawing Polygons
	Drawing Images
	Basic Animation
	Reacting to events…

	Where to go from here
	Python Keywords
	Built-in Functions
	A Few Python Modules

